9,073 research outputs found

    Theoretical characterization of a model of aragonite crystal orientation in red abalone nacre

    Full text link
    Nacre, commonly known as mother-of-pearl, is a remarkable biomineral that in red abalone consists of layers of 400-nm thick aragonite crystalline tablets confined by organic matrix sheets, with the (001)(001) crystal axes of the aragonite tablets oriented to within ±\pm 12 degrees from the normal to the layer planes. Recent experiments demonstrate that this orientational order develops over a distance of tens of layers from the prismatic boundary at which nacre formation begins. Our previous simulations of a model in which the order develops because of differential tablet growth rates (oriented tablets growing faster than misoriented ones) yield patterns of tablets that agree qualitatively and quantitatively with the experimental measurements. This paper presents an analytical treatment of this model, focusing on how the dynamical development and eventual degree of order depend on model parameters. Dynamical equations for the probability distributions governing tablet orientations are introduced whose form can be determined from symmetry considerations and for which substantial analytic progress can be made. Numerical simulations are performed to relate the parameters used in the analytic theory to those in the microscopic growth model. The analytic theory demonstrates that the dynamical mechanism is able to achieve a much higher degree of order than naive estimates would indicate.Comment: 20 pages, 3 figure

    Integrating person directed care into the client experience

    Get PDF
    Culture Change leaders in long term care have identified creative ways to implement a model of Person Directed Care to improve the client experience by providing choice, instilling dignity, and fostering deep relationships among its community members. One organization created an environment of care called ”The Small House” and educated its’ workforce using the Green House® Project Legacy Alignment program to redesign the organizational structure, experience and environment. Interviews were conducted with elders, staff, and family members (N=20) about their experiences living, working or visiting a Small House as compared to experiences in their previous dwelling, a traditional nursing home. They were asked to describe the biggest difference between the Small House and the traditional nursing home model, and the differences in the two models in terms of the food, personal care, and relationships. Study participants were also asked to rate on a likert scale satisfaction with their experiences in the traditional nursing home and the Small House. Results showed that satisfaction ratings were higher among all groups living, working, or visiting the Small House compared to the traditional nursing home setting. The themes that emerged most often in comparing the Small House homes to the traditional nursing home included choice, homelike atmosphere, positive sensory environment, and evidence of close relationships in the Small House. The Small House homes studied in this qualitative investigation appear to have captured the important elements that create real home and consistent care partners who know the elders deeply to keep them comfortable and engaged

    Higher-order corrections to the short-pulse equation

    Full text link
    Using renormalization group techniques, we derive an extended short- pulse equation as approximation to a nonlinear wave equation. We investigate the new equation numerically and show that the new equation captures efficiently higher- order effects on pulse propagation in cubic nonlinear media. We illustrate our findings using one- and two-soliton solutions of the first-order short-pulse equation as initial conditions in the nonlinear wave equation

    The AGN Luminosity Fraction in Merging Galaxies

    Get PDF
    Galaxy mergers are key events in galaxy evolution, often causing massive starbursts and fueling active galactic nuclei (AGN). In these highly dynamic systems, it is not yet precisely known how much starbursts and AGN respectively contribute to the total luminosity, at what interaction stages they occur, and how long they persist. Here we estimate the fraction of the bolometric infrared (IR) luminosity that can be attributed to AGN by measuring and modeling the full ultraviolet to far-infrared spectral energy distributions (SEDs) in up to 33 broad bands for 24 merging galaxies with the Code for Investigating Galaxy Emission. In addition to a sample of 12 confirmed AGN in late-stage mergers, found in the InfraredInfrared ArrayArray SatelliteSatellite Revised Bright Galaxy Sample or Faint Source Catalog, our sample includes a comparison sample of 12 galaxy mergers from the SpitzerSpitzer Interacting Galaxies Survey, mostly early-stage. We perform identical SED modeling of simulated mergers to validate our methods, and we supplement the SED data with mid-IR spectra of diagnostic lines obtained with SpitzerSpitzer InfraRed Spectrograph. The estimated AGN contributions to the IR luminosities vary from system to system from 0% up to 91% but are significantly greater in the later-stage, more luminous mergers, consistent with what is known about galaxy evolution and AGN triggering.Comment: 26 pages, 10 figure

    Bounds for Bose-Einstein Correlation Functions

    Full text link
    Bounds for the correlation functions of identical bosons are discussed for the general case of a Gaussian density matrix. In particular, for a purely chaotic system the two-particle correlation function must always be greater than one. On the other hand, in the presence of a coherent component the correlation function may take values below unity. The experimental situation is briefly discussed.Comment: 7 pages, LaTeX, DMR-THEP-93-5/

    The DEEP2 Redshift Survey: Lyman Alpha Emitters in the Spectroscopic Database

    Full text link
    We present the first results of a search for Lyman-alpha emitters (LAEs) in the DEEP2 spectroscopic database that uses a search technique that is different from but complementary to traditional narrowband imaging surveys. We have visually inspected ~20% of the available DEEP2 spectroscopic data and have found nine high-quality LAEs with clearly asymmetric line profiles and an additional ten objects of lower quality, some of which may also be LAEs. Our survey is most sensitive to LAEs at z=4.4-4.9 and that is indeed where all but one of our high-quality objects are found. We find the number density of our spectroscopically-discovered LAEs to be consistent with those found in narrowband imaging searches. The combined, averaged spectrum of our nine high-quality objects is well fit by a two-component model, with a second, lower-amplitude component redshifted by ~420 km/s with respect to the primary Lyman-alpha line, consistent with large-scale outflows from these objects. We conclude by discussing the advantages and future prospects of blank-sky spectroscopic surveys for high-z LAEs.Comment: Accepted for publication in Ap

    Generation of Arbitrary Frequency Chirps with a Fiber-Based Phase Modulator and Self-Injection-Locked Diode Laser

    Get PDF
    We present a novel technique for producing pulses of laser light whose frequency is arbitrarily chirped. The output from a diode laser is sent through a fiber-optical delay line containing a fiber-based electro-optical phase modulator. Upon emerging from the fiber, the phase-modulated pulse is used to injection-lock the laser and the process is repeated. Large phase modulations are realized by multiple passes through the loop while the high optical power is maintained by self-injection-locking after each pass. Arbitrary chirps are produced by driving the modulator with an arbitrary waveform generator
    • …
    corecore