4,110 research outputs found

    Mega-gifts in American Philanthropy: Giving Patterns 2001-2003

    Get PDF
    The researchers collected data on more than 8,000 gifts of $10 million or above in order to compile this report. Higher education, health, and cultural arts organizations receive the lion's share of the largest gifts that individuals, foundations, and corporations contribute to American philanthropy

    Mega-gifts in Jewish Philanthropy: Giving Patterns 2001-2003

    Get PDF
    The report on Jewish giving provides an analysis of gifts of $1 million or above from 2001 to 2003. The research examines the distribution of dollars by recipient type, donor type, region, and other categories

    Neutrinos And Big Bang Nucleosynthesis

    Full text link
    The early universe provides a unique laboratory for probing the frontiers of particle physics in general and neutrino physics in particular. The primordial abundances of the relic nuclei produced during the first few minutes of the evolution of the Universe depend on the electron neutrinos through the charged-current weak interactions among neutrons and protons (and electrons and positrons and neutrinos), and on all flavors of neutrinos through their contributions to the total energy density which regulates the universal expansion rate. The latter contribution also plays a role in determining the spectrum of the temperature fluctuations imprinted on the Cosmic Background Radiation (CBR) some 400 thousand years later. Using deuterium as a baryometer and helium-4 as a chronometer, the predictions of BBN and the CBR are compared to observations. The successes of, as well as challenges to the standard models of particle physics and cosmology are identified. While systematic uncertainties may be the source of some of the current tensions, it could be that the data are pointing the way to new physics. In particular, BBN and the CBR are used to address the questions of whether or not the relic neutrinos were fully populated in the early universe and, to limit the magnitude of any lepton asymmetry which may be concealed in the neutrinos.Comment: Accepted for publication in the Proceedings of Nobel Symposium 129, "Neutrino Physics"; to appear in Physics Scripta, eds., L Bergstrom, O. Botner, P. Carlson, P. O. Hulth, and T. Ohlsso

    Theory and Numerics of Gravitational Waves from Preheating after Inflation

    Get PDF
    Preheating after inflation involves large, time-dependent field inhomogeneities, which act as a classical source of gravitational radiation. The resulting spectrum might be probed by direct detection experiments if inflation occurs at a low enough energy scale. In this paper, we develop a theory and algorithm to calculate, analytically and numerically, the spectrum of energy density in gravitational waves produced from an inhomogeneous background of stochastic scalar fields in an expanding universe. We derive some generic analytical results for the emission of gravity waves by stochastic media of random fields, which can test the validity/accuracy of numerical calculations. We contrast our method with other numerical methods in the literature, and then we apply it to preheating after chaotic inflation. In this case, we are able to check analytically our numerical results, which differ significantly from previous works. We discuss how the gravity wave spectrum builds up with time and find that the amplitude and the frequency of its peak depend in a relatively simple way on the characteristic spatial scale amplified during preheating. We then estimate the peak frequency and amplitude of the spectrum produced in two models of preheating after hybrid inflation, which for some parameters may be relevant for gravity wave interferometric experiments.Comment: 28 pages, 10 figures, refs added, published versio

    A Computational Pipeline for High- Throughput Discovery of cis-Regulatory Noncoding RNA in Prokaryotes

    Get PDF
    Noncoding RNAs (ncRNAs) are important functional RNAs that do not code for proteins. We present a highly efficient computational pipeline for discovering cis-regulatory ncRNA motifs de novo. The pipeline differs from previous methods in that it is structure-oriented, does not require a multiple-sequence alignment as input, and is capable of detecting RNA motifs with low sequence conservation. We also integrate RNA motif prediction with RNA homolog search, which improves the quality of the RNA motifs significantly. Here, we report the results of applying this pipeline to Firmicute bacteria. Our top-ranking motifs include most known Firmicute elements found in the RNA family database (Rfam). Comparing our motif models with Rfam's hand-curated motif models, we achieve high accuracy in both membership prediction and base-pair–level secondary structure prediction (at least 75% average sensitivity and specificity on both tasks). Of the ncRNA candidates not in Rfam, we find compelling evidence that some of them are functional, and analyze several potential ribosomal protein leaders in depth

    One loop corrections to quantum hadrodynamics with vector mesons

    Get PDF
    The renormalized elastic ππ\pi\pi scattering amplitude to one loop is calculated in the chiral limit in the σ\sigma model and in a Quantum Hadrodynamic model (QHD-III) with vector mesons. It is argued that QHD-III reduces to the linear σ\sigma model in the limit that the vector meson masses become large. The pion decay constant is also calculated to 1-loop in the σ\sigma model, and at tree level in QHD-III; it is shown that the coefficient of the tree level term in the scattering amplitude equals Fπ2F_\pi^{-2}. The 1-loop correction of FπF_\pi in QHD-III violates strong isospin current conservation. Thus,it is concluded that QHD-III can, at best, only describe the strongly interacting nuclear sector.Comment: 6 page

    Mossbauer and optical spectroscopic study of temperature and redox effects on iron local environments in a Fe-doped (0.5 mol% Fe2O3)18Na2O–72SiO2 glass

    Get PDF
    Local environments of ferric and ferrous irons were systematically studied with Mössbauer (at liquid helium temperature)and ultraviolet–visible–near infrared spectroscopic methods for various 18Na2O–72SiO2 glasses doped with 0.5 mol% Fe2O3. These were prepared at temperatures of 1300–1600 °C in ambient air or at 1500 °C under reducing conditions with oxygen partial pressures from 12.3 to 0.27 x 10-7 atmospheres. The Mössbauer spectroscopic method identified three types of local environments, which were represented by the Fe3+ sextet, the Fe3+ doublet, and the Fe2+ doublet. The Fe3+ sextet ions were assigned to “isolated” octahedral ions. Under reducing conditions, the octahedral Fe3+ ions were readily converted into octahedral ferrous ions. The Fe3+ doublet exists both in octahedral and tetrahedral environment, mainly as tetrahedral sites in the reduced samples. The tetrahedral ions were found stable against reduction to ferrous ions. The Fe2+ doublet sites existed in octahedral coordination. Combining results from both spectroscopic studies, the 1120- and 2020-nm optical bands were assigned to octahedral ferrous ions with a different degree of distortion rather than different coordinations. Further, we assigned the 375-nm band to the transition of octahedral ferric ions that are sensitive to the change of oxygen partial pressure in glass melting and 415-, 435-, and 485-nm bands to the transitions of the tetrahedral ferric ions that are insensitive to oxidation states of the melt. The effect of ferric and ferrous ions with different coordination environments on the glass immiscibility was elucidated

    The Peculiar Motions of Early-Type Galaxies in Two Distant Regions VI: The Maximum Likelihood Gaussian Algorithm

    Get PDF
    The EFAR project is designed to measure the properties and peculiar motions of early-type galaxies in two distant regions. Here we describe the maximum likelihood algorithm we developed to investigate the correlations between the parameters of the EFAR database. One-, two-, and three-dimensional gaussian models are constructed to determine the mean value and intrinsic spread of the parameters, and the slopes and intrinsic parallel and orthogonal spread of the Mgb'-Mg2, Mg2-sigma, Mgb'-sigma relations, and the Fundamental Plane. In the latter case, the cluster peculiar velocities are also determined. We show that this method is superior to ``canonical'' approaches of least-squares type, which give biased slopes and biased peculiar velocities. We test the algorithm with Monte Carlo simulations of mock EFAR catalogues and derive the systematic and random errors on the estimated parameters. We find that random errors are always dominant. We estimate the influence of systematic errors due to the way clusters were selected and the hard limits and uncertainties in the selection function parameters for the galaxies. We explore the influence of uniform distributions in the Fundamental Plane parameters and the errors. We conclude that the mean peculiar motions of the EFAR clusters can be determined reliably. In particular, the placement of the two EFAR sample regions relative to the Lauer and Postman dipole allows us to strongly constrain the amplitude of the bulk motion in this direction.Comment: 43 pages, 19 figures, accepted for publication in MNRA

    Effective Field Theory Dimensional Regularization

    Get PDF
    A Lorentz-covariant regularization scheme for effective field theories with an arbitrary number of propagating heavy and light particles is given. This regularization scheme leaves the low-energy analytic structure of Greens functions intact and preserves all the symmetries of the underlying Lagrangian. The power divergences of regularized loop integrals are controlled by the low-energy kinematic variables. Simple diagrammatic rules are derived for the regularization of arbitrary one-loop graphs and the generalization to higher loops is discussed.Comment: 22 pages, 11 figures and 1 tabl
    corecore