957 research outputs found
Shear Viscosity of Uniform Fermi Gases with Population Imbalance
The shear viscosity plays an important role in studies of transport phenomena
in ultracold Fermi gases and serves as a diagnostic of various microscopic
theories. Due to the complicated phase structures of population-imbalanced
Fermi gases, past works mainly focus on unpolarized Fermi gases. Here we
investigate the shear viscosity of homogeneous, population-imbalanced Fermi
gases with tunable attractive interactions at finite temperatures by using a
pairing fluctuation theory for thermodynamical quantities and a gauge-invariant
linear response theory for transport coefficients. In the unitary and BEC
regimes, the shear viscosity increases with the polarization because the excess
majority fermions cause gapless excitations acting like a normal fluid. In the
weak BEC regime the excess fermions also suppress the noncondensed pairs at low
polarization, and we found a minimum in the ratio of shear viscosity and
relaxation time. To help constrain the relaxation time from linear response
theory, we derive an exact relation connecting some thermodynamic quantities
and transport coefficients at the mean-field level for unitary Fermi
superfluids with population imbalance. An approximate relation beyond
mean-field theory is proposed and only exhibits mild deviations from numerical
results.Comment: 11 pages, 4 figure
Distributions of Exotic Plants in Eastern Asia and North America
Although some plant traits have been linked to invasion success, the possible effects of regional factors, such as diversity, habitat suitability, and human activity are not well understood. Each of these mechanisms predicts a different pattern of distribution at the regional scale. Thus, where climate and soils are similar, predictions based on regional hypotheses for invasion success can be tested by comparisons of distributions in the source and receiving regions. Here, we analyse the native and alien geographic ranges of all 1567 plant species that have been introduced between eastern Asia and North America or have been introduced to both regions from elsewhere. The results reveal correlations between the spread of exotics and both the native species richness and transportation networks of recipient regions. This suggests that both species interactions and human-aided dispersal influence exotic distributions, although further work on the relative importance of these processes is needed
Phenomenological modeling of Geometric Metasurfaces
Metasurfaces, with their superior capability in manipulating the optical
wavefront at the subwavelength scale and low manufacturing complexity, have
shown great potential for planar photonics and novel optical devices. However,
vector field simulation of metasurfaces is so far limited to
periodic-structured metasurfaces containing a small number of meta-atoms in the
unit cell by using full-wave numerical methods. Here, we propose a general
phenomenological method to analytically model metasurfaces made up of
arbitrarily distributed meta-atoms based on the assumption that the meta-atoms
possess localized resonances with Lorentz-Drude forms, whose exact form can be
retrieved from the full wave simulation of a single element. Applied to phase
modulated geometric metasurfaces, our analytical results show good agreement
with full-wave numerical simulations. The proposed theory provides an efficient
method to model and design optical devices based on metasurfaces.Comment: 16 pages, 8 figure
Anti-hepatotoxic and anti-oxidant effects of extracts from Piper nigrum L. root
The aim of this study was to investigate the effect of Piper nigrum L. root extracts on carbon tetrachloride (CCl4)-induced rat liver injury. Among the three different extracts (water, ethanol and chloroform extract), ethanol extract exhibits the highest hepatoprotective activity (p < 0.05). When using the ethanol extract at a dose of 120 mg/ kg to treat the CCl4-intoxicated rat, the activities of alanine transaminase (ALT) and aspartate transanimase (AST) in rat serum decreased to 65.7 and 84.5%, respectively. At the same time, the lipid peroxidation (MDA) decreased to 52.3% and glutathione (GSH) increased to 55.8% in the rats liver homogenate, as compared with those of the CCl4 positive control rats. The hepatoprotective effect of ethanol extract was also supported by the histopathological observations. Moreover, the ethanol extract was studied for its in vitro antioxidant activity using the methods of ferric thiocyanate (FTC) and thiobarbituric acid (TBA). The findings indicate that the ethanol extract of P. nigrum L. root is an efficient hepatoprotective and antioxidant agent against CCl4-induced liver injury.Keywords: Piper nigrum L. root, ethanol extract, carbon tetrachloride (CCl4), hepatoprotective, antioxidan
Grand Canonical Adaptive Resolution Simulation for Molecules with Electrons: A Theoretical Framework based on Physical Consistency
A theoretical scheme for the treatment of an open molecular system with
electrons and nuclei is proposed. The idea is based on the Grand Canonical
description of a quantum region embedded in a classical reservoir of molecules.
Electronic properties of the quantum region are calculated at constant
electronic chemical potential equal to that of the corresponding (large) bulk
system treated at full quantum level. Instead, the exchange of molecules
between the quantum region and the classical environment occurs at the chemical
potential of the macroscopic thermodynamic conditions. T he Grand Canonical
Adaptive Resolution Scheme is proposed for the treatment of the classical
environment; such an approach can treat the exchange of molecules according to
first principles of statistical mechanics and thermodynamic. The overall scheme
is build on the basis of physical consistency, with the corresponding
definition of numerical criteria of control of the approximations implied by
the coupling. Given the wide range of expertise required, this work has the
intention of providing guiding principles for the construction of a well
founded computational protocol for actual multiscale simulations from the
electronic to the mesoscopic scale.Comment: Computer Physics Communications (2017), in pres
Bidding for Highly Available Services with Low Price in Spot Instance Market
ABSTRACT Amazon EC2 has built the Spot Instance Marketplace and offers a new type of virtual machine instances called as spot instances. These instances are less expensive but considered failure-prone. Despite the underlying hardware status, if the bidding price is lower than the market price, such an instance will be terminated. Distributed systems can be built from the spot instances to reduce the cost while still tolerating instance failures. For example, embarrassingly parallel jobs can use the spot instances by re-executing failed tasks. The bidding framework for such jobs simply selects the spot price as the bid. However, highly available services like lock service or storage service cannot use the similar techniques for availability consideration. The spot instance failure model is different to that of normal instances (fixed failure probability in traditional distributed model). This makes the bidding strategy more complex to keep service availability for such systems. We formalize this problem and propose an availability and cost aware bidding framework. Experiment results show that our bidding framework can reduce the costs of a distributed lock service and a distributed storage service by 81.23% and 85.32% respectively while still keeping availability level the same as it is by using on-demand instances
- …