58 research outputs found

    Three-dimensional beam pattern of regular sperm whale clicks confirms bent-horn hypothesis

    Get PDF
    Author Posting. © Acoustical Society of America, 2005. This article is posted here by permission of Acoustical Society of America for personal use, not for redistribution. The definitive version was published in Journal of the Acoustical Society of America 117 (2005): 1473-1485, doi:10.1121/1.1828501.The three-dimensional beam pattern of a sperm whale (Physeter macrocephalus) tagged in the Ligurian Sea was derived using data on regular clicks from the tag and from hydrophones towed behind a ship circling the tagged whale. The tag defined the orientation of the whale, while sightings and beamformer data were used to locate the whale with respect to the ship. The existence of a narrow, forward-directed P1 beam with source levels exceeding 210 dBpeak re: 1 µPa at 1 m is confirmed. A modeled forward-beam pattern, that matches clicks >20° off-axis, predicts a directivity index of 26.7 dB and source levels of up to 229 dBpeak re: 1 µPa at 1 m. A broader backward-directed beam is produced by the P0 pulse with source levels near 200 dBpeak re: 1 µPa at 1 m and a directivity index of 7.4 dB. A low-frequency component with source levels near 190 dBpeak re: 1 µPa at 1 m is generated at the onset of the P0 pulse by air resonance. The results support the bent-horn model of sound production in sperm whales. While the sperm whale nose appears primarily adapted to produce an intense forward-directed sonar signal, less-directional click components convey information to conspecifics, and give rise to echoes from the seafloor and the surface, which may be useful for orientation during dives.This work was funded by grants from the Office of Naval Research Grants N00014-99-1-0819 and N00014-01-1-0705, and the Packard Foundation

    Evidence from sperm whale clans of symbolic marking in non-human cultures

    Get PDF
    Culture, a pillar of the remarkable ecological success of humans, is increasingly recognized as a powerful force structuring nonhuman animal populations. A key gap between these two types of culture is quantitative evidence of symbolic markers—seemingly arbitrary traits that function as reliable indicators of cultural group membership to conspecifics. Using acoustic data collected from 23 Pacific Ocean locations, we provide quantitative evidence that certain sperm whale acoustic signals exhibit spatial patterns consistent with a symbolic marker function. Culture segments sperm whale populations into behaviorally distinct clans, which are defined based on dialects of stereotyped click patterns (codas). We classified 23,429 codas into types using contaminated mixture models and hierarchically clustered coda repertoires into seven clans based on similarities in coda usage; then we evaluated whether coda usage varied with geographic distance within clans or with spatial overlap between clans. Similarities in within-clan usage of both “identity codas” (coda types diagnostic of clan identity) and “nonidentity codas” (coda types used by multiple clans) decrease as space between repertoire recording locations increases. However, between-clan similarity in identity, but not nonidentity, coda usage decreases as clan spatial overlap increases. This matches expectations if sympatry is related to a measurable pressure to diversify to make cultural divisions sharper, thereby providing evidence that identity codas function as symbolic markers of clan identity. Our study provides quantitative evidence of arbitrary traits, resembling human ethnic markers, conveying cultural identity outside of humans, and highlights remarkable similarities in the distributions of human ethnolinguistic groups and sperm whale clans

    Environmental noise reduces predation rate in an aquatic invertebrate

    Get PDF
    Noise is one of a wide range of disturbances associated with human activities that have been shown to have detrimental impacts on a wide range of species, from montane regions to the deep marine environment. Noise may also have community-level impacts via predator–prey interactions, thus jeopardising the stability of trophic networks. However, the impact of noise on freshwater ecosystems is largely unknown. Even more so is the case of insects, despite their crucial role in trophic networks. Here, we study the impact of underwater noise on the predatory functional response of damselfly larvae. We compared the feeding rates of larvae under anthropogenic noise, natural noise, and silent conditions. Our results suggest that underwater noise (pooling the effects of anthropogenic noise and natural noise) decreases the feeding rate of damselflies significantly compared to relatively silent conditions. In particular, natural noise increased the handling time significantly compared to the silent treatment, thus reducing the feeding rate. Unexpectedly, feeding rates under anthropogenic noise were not reduced significantly compared to silent conditions. This study suggests that noise per se may not necessarily have negative impacts on trophic interactions. Instead, the impact of noise on feeding rates may be explained by the presence of nonlinearities in acoustic signals, which may be more abundant in natural compared to anthropogenic noise. We conclude by highlighting the importance of studying a diversity of types of acoustic pollution, and encourage further work regarding trophic interactions with insects using a functional response approach

    The Threat of Underwater Noise on Whales: Management in Light of Scientific Limitations

    Get PDF

    A modelling comparison between received sound levels produced by a marine Vibroseis array and those from an airgun array for some typical seismic survey scenarios

    No full text
    Marine Vibroseis (MV) may provide a marine seismic sound source that has less environmental impact than conventional airguns. Modelled sound levels from a realistic MV array and airgun array with similar downward energy at frequencies <. 100. Hz were compared under three scenarios: shallow, deep, and slope. Changing the layout of the MV array's higher frequency sources reduced sound exposure levels (SELs) by 4. dB. At 100. m range this MV was 20. dB lower in peak-to-peak sound pressure level vs. the airgun array, decreasing to 12. dB lower at 5. km, the maximum modelled range for peak levels. SELs were less clear-cut, but for both shallow and deep water, MV produced 8. dB lower SELs than the airguns at 100. km range because of MV's reduced bandwidth. Overall, MV produced lower broadband SELs, especially at long range, and lower peak pressure, especially at short range, than airguns

    ESTIMATES OF SPERM WHALE ABUNDANCE IN THE NORTHEASTERN TEMPERATE PACIFIC FROM A COMBINED ACOUSTIC AND VISUAL SURVEY

    Get PDF
    We estimate the abundance of sperm whales in a 7.8 million km2 study area in the eastern temperate North Pacific using data from a ship-based acoustic and visual line-transect survey in spring 1997. Sperm whales were detected acoustically using a hydrophone array towed at 15 km/h and 100 m depth. The hydrophone array was towed for 14,500 km, and locations were estimated acoustically for 45 distinct sperm whale groups. Whales producing slow clicks (\u3e2-s period) were detected at greater distance (up to 37 km), and the estimation of effective strip widths was stratified based on initial click period. Visual survey effort (using 25X binoculars and naked eyes) covered 8,100 km in Beaufort sea states 0-5 and resulted in only eight sightings. The effective strip width for visual detections was estimated from previous surveys conducted using the same methods and similar vessels in the eastern Pacific. Estimated sperm whale abundance in the study area was not significantly different between acoustic (32,100, CV = 0.36) and visual (26,300, CV = 0.81) detection methods. Acoustic techniques substantially increased the number of sperm whales detected on this line-transect survey by increasing the range of detection and allowing nighttime surveys; however, visual observations were necessary for estimating group size

    Genes or culture: are mitochondrial genes associated with tool use in bottlenose dolphins (Tursiops sp.)?

    Get PDF
    Some bottlenose dolphins use marine sponges as foraging tools ('sponging'), which appears to be socially transmitted from mothers mainly to their female offspring. Yet, explanations alternative to social transmission have been proposed. Firstly, the propensity to engage in sponging might be due to differences in diving ability caused by variation of mitochondrial genes coding for proteins of the respiratory chain. Secondly, the cultural technique of sponging may have selected for changes in these same genes (or other autosomal ones) among its possessors. We tested whether sponging can be predicted by mitochondrial coding genes and whether these genes are under selection. In 29 spongers and 54 non-spongers from two study sites, the non-coding haplotype at the HVRI locus was a significant predictor of sponging, whereas the coding mitochondrial genes were not. There was no evidence of selection in the investigated genes. Our study shows that mitochondrial gene variation is unlikely to be a viable alternative to cultural transmission as a primary driver of tool use in dolphins
    corecore