49 research outputs found

    Study of the Effects of Socioeconomic Class on an Image of a Department Store

    Get PDF
    General Busines

    Nanotechnology for Packaging

    Get PDF

    Design of Smart Head-Mounted Display Technology: A convergent mixed methods study

    Get PDF
    The purpose of this study was to explore the factors impacting preference for head-mounted display (HMD) technology among individuals with visual impairment. HMD are commercially available assistive devices intended for those with low vision. Individuals with a range of visual impairment and diagnosis of either age-related macular degeneration, diabetic retinopathy, glaucoma or retinitis pigmentosa were recruited. Participants completed the Impact of Vision Impairment (IVI) questionnaire, were taught to use three different HMDs (eSight, Epson Moverio, and NuEyes) and were subsequently interviewed regarding their experience. Interviews were recorded, transcribed, and coded by two independent coders. Qualitative data was analyzed using a thematic approach and a joint display analysis was conducted. Twenty-one participants were interviewed (mean age 58.2 years, 57% male, median Snellen acuity 20/40 [range 20/20-hand movement]). An equal number of participants (n=9) expressed preference for eSight and NuEyes, while (n=3) preferred the Epson Moverio. Participants emphasized ease of use, especially of HMD controls and screen, as primary reasons for HMD preference. Participants with lower IVI Well-Being scores were more likely to express eSight preference due to clarity, ease of use, and vision improvement. Those with moderate IVI Well-Being scores were more likely to prefer the NuEyes due to appearance, wireless design, and magnification. Those with higher IVI Well-Being scores cited usability as the most important HMD feature. This study found that user preferences for HMD was associated with vision-related well-being, and that usability of devices was paramount in preference

    Iodofiltic Acid I 123 (BMIPP) Fatty Acid Imaging Improves Initial Diagnosis in Emergency Department Patients With Suspected Acute Coronary Syndromes A Multicenter Trial

    Get PDF
    ObjectivesThe aim of this study was to assess the performance of β-methyl-p-[123I]-iodophenyl-pentadecanoic acid (BMIPP) single-photon emission computed tomography (SPECT) to detect acute coronary syndromes (ACS) in emergency department patients with chest pain.BackgroundEmergency department diagnosis of chest pain is problematic, often requiring prolonged observation and stress testing. BMIPP SPECT detects abnormalities in fatty acid metabolism resulting from myocardial ischemia, even many hours after symptom cessation.MethodsEmergency department patients with suspected ACS were enrolled at 50 centers. Patients received 5 mCi BMIPP within 30 h of symptom cessation. BMIPP SPECT images were interpreted semiquantitatively by 3 blinded readers. Initial clinical diagnosis was based on symptoms, initial electrocardiograms, and troponin, whereas the final diagnosis was based on all available data (including angiography and stress SPECT) but not BMIPP SPECT. Final diagnoses were adjudicated by a blinded committee as ACS, intermediate likelihood of ACS, or negative for ACS.ResultsA total of 507 patients were studied and efficacy was evaluated in 448 patients with sufficient data. The sensitivity of BMIPP by 3 blinded readers for a final diagnosis of ACS and intermediate likelihood of ACS was 71% (95% confidence interval [CI]: 64% to 79%), 74% (95% CI: 68% to 81%), and 69% (95% CI: 62% to 77%); the corresponding specificity of BMIPP was 67% (95% CI: 61% to 73%), 54% (95% CI: 48% to 60%), and 70% (95% CI: 64% to 76%). Compared with the initial diagnosis alone, BMIPP + initial diagnosis increased sensitivity from 43% to 81% (p < 0.001), negative predictive value from 62% to 83% (p < 0.001), and positive predictive value from 41% to 58% (p < 0.001), whereas specificity was unchanged (61% to 62%, p = NS).ConclusionsThe addition of BMIPP data to the initially available clinical information adds incremental value toward the early diagnosis of an ACS, potentially allowing determination of the presence or absence of ACS to be made earlier in the evaluation process. (Safety and Efficacy Iodofiltic Acid I 123 in the Treatment of Acute Coronary Syndrome [Zeus-ACS]; NCT00514501

    ASASSN-14ko is a Periodic Nuclear Transient in ESO 253-G003

    Full text link
    We present the discovery that ASASSN-14ko is a periodically flaring AGN at the center of the galaxy ESO 253-G003. At the time of its discovery by the All-Sky Automated Survey for Supernovae (ASAS-SN), it was classified as a supernova close to the nucleus. The subsequent six years of V- and g-band ASAS-SN observations reveal that ASASSN-14ko has nuclear flares occurring at regular intervals. The seventeen observed outbursts show evidence of a decreasing period over time, with a mean period of P0=114.2±0.4P_0 = 114.2 \pm 0.4 days and a period derivative of P˙=0.0017±0.0003\dot{P} = -0.0017\pm0.0003. The most recent outburst in May 2020, which took place as predicted, exhibited spectroscopic changes during the rise and a had a UV bright, blackbody spectral energy distribution similar to tidal disruption events (TDEs). The X-ray flux decreased by a factor of 4 at the beginning of the outburst and then returned to its quiescent flux after ~8 days. TESS observed an outburst during Sectors 4-6, revealing a rise time of 5.60±0.055.60 \pm 0.05 days in the optical and a decline that is best fit with an exponential model. We discuss several possible scenarios to explain ASASSN-14ko's periodic outbursts, but currently favor a repeated partial TDE. The next outbursts should peak in the optical on UT 2020-09-7.4± \pm 1.1 and UT 2020-12-26.5± \pm 1.4.Comment: 26 pages, 15 figures, 7 tables. Will be submitted to ApJ. The latest flare is currently ongoing, as we predicte

    Survival and Passage of Juvenile Chinook Salmon and Steelhead Passing through Bonneville Dam, 2010

    Full text link
    Pacific Northwest National Laboratory (PNNL) and subcontractors conducted an acoustic-telemetry study of juvenile salmonid fish passage and survival at Bonneville Dam in 2010. The study was conducted to assess the readiness of the monitoring system for official compliance studies under the 2008 Biological Opinion and Fish Accords and to assess performance measures including route-specific fish passage proportions, travel times, and survival based upon a single-release model. This also was the last year of evaluation of effects of a behavioral guidance device installed in the Powerhouse 2 forebay. The study relied on releases of live Juvenile Salmon Acoustic Telemetry System tagged smolts in the Columbia River and used acoustic telemetry to evaluate the approach, passage, and survival of passing juvenile salmon. This study supports the U.S. Army Corps of Engineers continual effort to improve conditions for juvenile anadromous fish passing through Columbia River dams

    Apophis planetary defense campaign

    Get PDF
    We describe results of a planetary defense exercise conducted during the close approach to Earth by the near-Earth asteroid (99942) Apophis during 2020 December–2021 March. The planetary defense community has been conducting observational campaigns since 2017 to test the operational readiness of the global planetary defense capabilities. These community-led global exercises were carried out with the support of NASA's Planetary Defense Coordination Office and the International Asteroid Warning Network. The Apophis campaign is the third in our series of planetary defense exercises. The goal of this campaign was to recover, track, and characterize Apophis as a potential impactor to exercise the planetary defense system including observations, hypothetical risk assessment and risk prediction, and hazard communication. Based on the campaign results, we present lessons learned about our ability to observe and model a potential impactor. Data products derived from astrometric observations were available for inclusion in our risk assessment model almost immediately, allowing real-time updates to the impact probability calculation and possible impact locations. An early NEOWISE diameter measurement provided a significant improvement in the uncertainty on the range of hypothetical impact outcomes. The availability of different characterization methods such as photometry, spectroscopy, and radar provided robustness to our ability to assess the potential impact risk
    corecore