490 research outputs found
Continuous and complete conversion of high concentration p-nitrophenol in a flow-through membrane reactor
Here, we report on a green and effective method for the continuous and complete conversion of high concentrations of p-nitrophenol (PNP) using a flow-through membrane reactor and less NaBH4. The catalytic membrane was successfully fabricated by loading Pd nanoparticles onto the surface of a branched TiO2 nanorod-functionalized ceramic membrane. The modification with branched TiO2 nanorods can significantly improve the loading amount of Pd nanoparticles onto ceramic membranes, resulting in enhanced catalytic performance. With 6 mg of Pd, 93 L m−2 hr−1 of flux density and 8.04 cm2 of membrane surface area in the flow-through membrane reactor, PNP at a concentration of 4,000 ppm can be converted to high-value p-aminophenol using less NaBH4 (using a molar ratio of NaBH4:PNP of 9.6) within 24 s at 30°C. More importantly, the conversion can be continuously and stably performed for 240 min
TaqMan probe array for quantitative detection of DNA targets
To date real-time quantitative PCR and gene expression microarrays are the methods of choice for quantification of nucleic acids. Herein, we described a unique fluorescence resonance energy transfer-based microarray platform for real-time quantification of nucleic acid targets that combines advantages of both and reduces their limitations. A set of 3′ amino-modified TaqMan probes were designed and immobilized on a glass slide composing a regular microarray pattern, and used as probes in the consecutive PCR carried out on the surface. During the extension step of the PCR, 5′ nuclease activity of DNA polymerase will cleave quencher dyes of the immobilized probe in the presence of nucleic acids targets. The increase of fluorescence intensities generated by the change in physical distance between reporter fluorophore and quencher moiety of the probes were collected by a confocal scanner. Using this new approach we successfully monitored five different pathogenic genomic DNAs and analyzed the dynamic characteristics of fluorescence intensity changes on the TaqMan probe array. The results indicate that the TaqMan probe array on a planar glass slide monitors DNA targets with excellent specificity as well as high sensitivity. This set-up offers the great advantage of real-time quantitative detection of DNA targets in a parallel array format
Intermittent hypoxia-induced enhancement of sociability and working memory associates with CNTNAP2 upregulation
IntroductionHypoxia is an environmental risk factor for many disorders throughout life. Perinatal hypoxia contributes to autism spectrum disorder (ASD), while hypoxic conditions in the elderly facilitate memory deficits. However, the effects of hypoxia on adolescence remains elusive. CNTNAP2 is a critical molecule in ASD pathogenesis with undefined mechanisms. We investigate hypoxia’s impact on adolescence and the underlying mechanism related to CNTNAP2.MethodsThree-chamber social approach test, Y maze, Morris Water Maze and Open Field Test were applied to evaluate behavioral alterations. Immunoblotting, 5′- RACE and dual-luciferase reporter assay were performed to examine CNTNAP2 protein expression, transcription start site (TSS) of human CNTNAP2 gene and CNTNAP2 promoter activity, respectively.ResultsIntermittent hypoxia treatment improved social behaviors and working memory in adolescent mice. CNTNAP2 was increased in the brains of hypoxia-treated mice. The sequencing results identified the TSS at 518 bp upstream of the translation start site ATG. Hypoxia upregulated CNTNAP2 by interacting with functional hypoxia response elements in CNTNAP2 promoter.ConclusionIntermittent hypoxia enhanced sociability and working memory associated with CNTNAP2 upregulation. Our study provides novel insights into intermittent hypoxia’s impact on development and the interaction between genetic and environmental risk factors in ASD pathogenesis
Low-Frequency Repetitive Transcranial Magnetic Stimulation Ameliorates Cognitive Function and Synaptic Plasticity in APP23/PS45 Mouse Model of Alzheimer’s Disease
Alzheimer’s disease (AD) is a chronic neurodegenerative disease leading to dementia, which is characterized by progressive memory loss and other cognitive dysfunctions. Recent studies have attested that noninvasive repetitive transcranial magnetic stimulation (rTMS) may help improve cognitive function in patients with AD. However, the majority of these studies have focused on the effects of high-frequency rTMS on cognitive function, and little is known about low-frequency rTMS in AD treatment. Furthermore, the potential mechanisms of rTMS on the improvement of learning and memory also remain poorly understood. In the present study, we reported that severe deficits in spatial learning and memory were observed in APP23/PS45 double transgenic mice, a well known mouse model of AD. Furthermore, these behavioral changes were accompanied by the impairment of long-term potentiation (LTP) in the CA1 region of hippocampus, a brain region vital to spatial learning and memory. More importantly, 2-week low-frequency rTMS treatment markedly reversed the impairment of spatial learning and memory as well as hippocampal CA1 LTP. In addition, low-frequency rTMS dramatically reduced amyloid-β precursor protein (APP) and its C-terminal fragments (CTFs) including C99 and C89, as well as β-site APP-cleaving enzyme 1 (BACE1) in the hippocampus. These results indicate that low-frequency rTMS noninvasively and effectively ameliorates cognitive and synaptic functions in a mouse model of AD, and the potential mechanisms may be attributed to rTMS-induced reduction in Aβ neuropathology
Data-enabled digestive medicine: a new big data analytics platform
This paper presents a big data analystics platform for clinical research and practice in the Gastroenterology Department of Xiangya Hospital at Central South University in China. This platform features a comprehensive and systematic support of big data in digestive medicine including geneneral health management, clinical gastroenterology practice, and related genomics research, which is proven to be helpful in real world clinical practices. A typical use case of integrated analysis based on electronic medical records and colonoscopy data was presented and discussed, the analaystic report on risk factors of colorectal diseases shows a reasonable recommendation about the age when people should start to screen the colorectal cancer, which could be very useful to individual and group health management for the general population in China
SERS spectroscopy with machine learning to analyze human plasma derived sEVs for coronary artery disease diagnosis and prognosis
Coronary artery disease (CAD) is one of the major cardiovascular diseases and represents the leading causes of global mortality. Developing new diagnostic and therapeutic approaches for CAD treatment are critically needed, especially for an early accurate CAD detection and further timely intervention. In this study, we successfully isolated human plasma small extracellular vesicles (sEVs) from four stages of CAD patients, that is, healthy control, stable plaque, non-ST-elevation myocardial infarction, and ST-elevation myocardial infarction. Surface-enhanced Raman scattering (SERS) measurement in conjunction with five machine learning approaches, including Quadratic Discriminant Analysis, Support Vector Machine (SVM), K-Nearest Neighbor, Artificial Neural network, were then applied for the classification and prediction of the sEV samples. Among these five approaches, the overall accuracy of SVM shows the best predication results on both early CAD detection (86.4%) and overall prediction (92.3%). SVM also possesses the highest sensitivity (97.69%) and specificity (95.7%). Thus, our study demonstrates a promising strategy for noninvasive, safe, and high accurate diagnosis for CAD early detection
A High-Kinetics Sulfur Cathode with a Highly Efficient Mechanism for Superior Room-Temperature Na-S Batteries
2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim Applications of room-temperature-sodium sulfur (RT-Na/S) batteries are currently impeded by the insulating nature of sulfur, the slow redox kinetics of sulfur with sodium, and the dissolution and migration of sodium polysulfides. Herein, a novel micrometer-sized hierarchical S cathode supported by FeS2 electrocatalyst, which is grown in situ in well-confined carbon nanocage assemblies, is presented. The hierarchical carbon matrix can provide multiple physical entrapment to polysulfides, and the FeS2 nanograins exhibit a low Na-ion diffusion barrier, strong binding energy, and high affinity for sodium polysulfides. Their combination makes it an ideal sulfur host to immobilize the polysulfides and achieve reversible conversion of polysulfides toward Na2S. Importantly, the hierarchical S cathode is suitable for large-scale production via the inexpensive and green spray-drying method. The porous hierarchical S cathode offers a high sulfur content of 65.5 wt%, and can deliver high reversible capacity (524 mAh g−1 over 300 cycles at 0.1 A g−1) and outstanding rate capability (395 mAh g−1 at 1 A g−1 for 850 cycles), holding great promise for both scientific research and real application
Discovery of diarylpyridine derivatives as novel non-nucleoside HIV-1 reverse transcriptase inhibitors
Two series (4 and 5) of diarylpyridine derivatives were designed, synthesized, and evaluated for anti-HIV-1 activity. The most promising compound, 5e, inhibited HIV-1 IIIB, NL4-3, and RTMDR1 with low nanomolar EC50 values and selectivity indexes of >10,000. The results of this study indicate that diarylpyridine can be used as a novel scaffold to derive a new class of potent NNRTIs, active against both wild-type and drug resistant HIV-1 strains
The relationship of intimate partner violence on depression: the mediating role of perceived social support and the moderating role of the Big Five personality
IntroductionThis study aimed to explore the influence of Intimate Partner Violence (IPV) on depression, the mediating role of social support, and the moderating role of the Big Five personality traits in the relationship between social support and depression.MethodsParticipants were recruited from Mainland China, using a stratified random sampling and quota sampling method. From June to August 2022, a diverse group of 21,916 participants (ranging from 12 to 100 years old) completed the Intimate Partner Violence Scale, Patient Health Questionnaire, Perceived Social Support Scale, and Big Five Inventory-Short Version.ResultsIPV was significantly positively correlated with depression and significantly negatively correlated with perceived social support. Perceived social support plays a mediating role in the link between IPV and depression.DiscussionHealthcare workers should assess social support and provide adequate care or recommendations for increasing social support when patients with IPV report depressive symptoms. Patients can be coached by professionals to improve their resiliency by developing or nurturing more optimistic personality traits
- …