63 research outputs found

    Towards passive bioremediation of dye-bearing effluents using hydrous ferric oxide wastes: Mechanisms, products and microbiology

    Get PDF
    A novel, circular economy-inspired approach for the “passive” (non-powered and reagent-free) treatment of dye-bearing effluent is presented. The treatment utilises the biogeochemical interaction of dye-bearing wastewater with hydrous ferric oxide (HFO) bearing sludges. The work presented demonstrates for the first time the reuse of HFO-rich waste sludges from potable water and mine water treatment. The waste was used directly without modification or reagent addition, as media/substrate in simple flow-through reactors for the decolourisation and biodegradation of methyl orange (MO) and mixed dyes textile effluent. Three phases of exploratory proof of concept work were undertaken. Columns containing HFO sludges were challenged with solution of MO, and MO amended with glycerol (Phase I), MO in a synthetic textile effluent recipe (Phase II), and real mixed textile effluent containing a mixture of dyes (Phase III). After an initial lag period extensive decolourisation of dye was observed in all cases at rates comparable with pure strains and engineered bioreactor processes, with evidence of biodegradation beyond simple cleavage of the mono azo chromophore and mineralisation. The microbiology of the initial sludge samples in both cases exhibited a diverse range of iron oxidising and reducing bacteria. However, post experiment the microbiology of sludge evolved from being dominated by Proteobacteria to being dominated by Firmicutes. Distinct changes in the microbial community structure were observed in post-treatment MWTS and WTWS where genera capable of iron and sulphate reduction and/or aromatic amine degradation were identified. Average nitrogen removal rates for the columns ranged from 27.8 to 194 g/m3/day which is higher than engineered sequential anaerobic-aerobic bioreactor. Postulated mechanisms for the fast anaerobic decolourisation, biodegradation, and mineralisation of the dyes (as well nitrogen transformations) include various direct and indirect enzymatic and metabolic reactions, as well as reductive attack by continuously regenerated reductants such as Fe(II), HFO bound Fe(II), FeS, and HS−. The ability of iron reducers to degrade aromatic rings is also considered important in the further biodegradation and complete mineralisation of organic carbon. The study reveals that abundant and ubiquitous HFO-rich waste sludges, can be used without amendment, as a substrate in simple flow-through bioremediation system for the decolourisation and partial biodegradation of dyes in textile effluent

    Microwave and terahertz dielectric properties of MgTiO3–CaTiO3 ceramics

    Get PDF
    The THz dielectric properties of MgTiO3–CaTiO3 ceramics are reported. The ceramics were prepared via a solid-state reaction route and the sintering conditions were optimized to obtain ceramics with high permittivity and low loss in the terahertz frequency domain. The amount of impurities (MgTi2O5) and grain size increased with increasing sintering temperature. The dielectric properties improved with increasing density, and the best terahertz dielectric performance was obtained at 1260 °C, with a permittivity of 17.73 and loss of 3.07×10−3. Ceramics sintered above 1260 °C showed a sharp increase in loss, which is ascribed to an increase in the impurity content

    Tissue discrimination in head and neck cancer using image fusion of IR and optical microscopy.

    Get PDF
    A regression-based fusion algorithm has been used to merge hyperspectral Fourier transform infrared (FTIR) data with an H&E image of oral squamous cell carcinoma metastases in cervical lymphoid nodal tissue. This provides insight into the success of the ratio of FTIR absorbances at 1252 cm-1 and 1285 cm-1 in discriminating between these tissue types. The success is due to absorbances at these two wavenumbers being dominated by contributions from DNA and collagen, respectively. A pixel-by-pixel fit of the fused spectra to the FTIR spectra of collagen, DNA and cytokeratin reveals the contributions of these molecules to the tissue at high spatial resolution

    Positive Shifts in Emotion Evaluation Following Mindfulness-Based Cognitive Therapy (MBCT) in Remitted Depressed Participants

    Get PDF
    Objectives: A combination of negatively biased information processing and a reduced ability to experience positive emotions can persist into remission from major depression (rMDD). Studies have shown that mindfulness-based cognitive therapy (MBCT) can increase self-reported positive emotions in rMDD participants; similar changes using neuropsychological tasks have not been shown. In this study, we investigated neuropsychological change in emotional processing following MBCT in rMDD participants. Methods: Seventy-three rMDD participants, 40 of whom received MBCT and 33 of whom continued with treatment as usual (TAU), and 42 never depressed participants took part; neither the TAU nor never depressed participants received MBCT. All were assessed at baseline and immediately following MBCT or after an 8-week gap for those without active intervention. Participants completed emotion evaluation and face emotion recognition tasks with self-report measures (mood, mindfulness) at each session. Results: Results showed an MBCT-specific shift in ratings from less negative to more positive emotion evaluations, which correlated with mindfulness practice and self-report mindfulness change. Both the MBCT and TAU groups showed a small increase in overall face emotion recognition accuracy compared with no change in never depressed participants. Conclusions: These findings support a specific role for MBCT in encouraging more positive evaluations of life situations in those with previous depression rather than influencing lower-level processing of emotions. Results should be interpreted cautiously given that this was a non-randomised, preference choice trial. Trial Registration: NCT0222604

    A de-waxing methodology for scanning probe microscopy

    No full text
    A de-waxing protocol that successfully removes paraffin from tissue microarray (TMA) cores of fixed tissue obtained from oral cancer is described. The success of the protocol is demonstrated by the comparison of Fourier transform infrared (FTIR) results obtained on paraffin embedded and dewaxed tissue and the absence of any significant correlations between infrared scanning near-field optical microscopy (SNOM) images of de-waxed tissue obtained at the three main paraffin IR peaks. The success of the protocol in removing paraffin from tissue is also demonstrated by images obtained with scanning electron microscopy (SEM) and by energy dispersive spectra (EDS) of a de-waxed CaF2 disc which shows no significant contribution from carbon. The FTIR spectra of the de-waxed TMA core overlaps that obtained from OE19 oesophageal cancer cells which had never been exposed to paraffin

    Metric-based analysis of FTIR data to discriminate tissue types in oral cancer

    No full text
    A machine learning algorithm (MLA) has predicted the prognosis of oral potentially malignant lesions and discriminated between lymph node tissue and metastatic oral squamous cell carcinoma (OSCC). The MLA analyses...</jats:p
    • 

    corecore