851 research outputs found

    Random-cluster multi-histogram sampling for the q-state Potts model

    Get PDF
    Using the random-cluster representation of the qq-state Potts models we consider the pooling of data from cluster-update Monte Carlo simulations for different thermal couplings KK and number of states per spin qq. Proper combination of histograms allows for the evaluation of thermal averages in a broad range of KK and qq values, including non-integer values of qq. Due to restrictions in the sampling process proper normalization of the combined histogram data is non-trivial. We discuss the different possibilities and analyze their respective ranges of applicability.Comment: 12 pages, 9 figures, RevTeX

    How to measure the parity of the Θ+\Theta^+ in p⃗p⃗\vec p\vec p collisions

    Get PDF
    Triggered by a recent paper by Thomas, Hicks and Hosaka, we investigate which observables can be used to determine the parity of the Θ+\Theta^+ from the reaction p⃗p⃗→Σ+Θ+\vec p\vec p \to \Sigma^+\Theta^+ near its production threshold. In particular, we show that the sign of the spin correlation coefficient AxxA_{xx} for small excess energies yields the negative of the parity of the Θ+\Theta^+. The argument relies solely on the Pauli principle and parity conservation and is therefore model--independent.Comment: References completed, discussion on possible influence of background added; conclusions unchange

    Heavy Quark Solitons in the Nambu--Jona-Lasinio Model

    Get PDF
    The Nambu--Jona-Lasinio model (NJL) is extended to incorporate heavy quark spin-symmetry. In this model baryons containing one heavy quark are analyzed as bound-states of light baryons, represented as chiral solitons, and mesons containing one heavy quark. From related studies in Skyrme type models, the ground-state heavy baryon is known to arise for the heavy meson in a P--wave configuration. In the limit of an infinitely large quark mass the heavy meson wave-function is sharply peaked at the center of the chiral soliton. Therefore the bound state equation reduces to an eigenvalue problem for the coefficients of the operators contained in the most general P-wave {\it ansatz} for the heavy meson. Within the NJL model a novel feature arises from the coupling of the heavy meson to the various light quark states. In this respect conceptual differences to Skyrme model calculations are discovered: The strongest bound state is given by a heavy meson configuration which is completely decoupled from the grand spin zero channel of the light quarks.Comment: 16 pages REVTEX, one postscript figure, to appear in Phys. Rev.

    Assessment of power spectral density of microvascular hemodynamics in skeletal muscles at very low and low-frequency via near-infrared diffuse optical spectroscopies

    Get PDF
    In this work, we used a hybrid time domain near-infrared spectroscopy (TD-NIRS) and diffuse correlation spectroscopy (DCS) device to retrieve hemoglobin and blood flow oscillations of skeletal muscle microvasculature. We focused on very low (VLF) and low-frequency (LF) oscillations (i.e., frequency lower than 0.145 Hz), that are related to myogenic, neurogenic and endothelial activities. We measured power spectral density (PSD) of blood flow and hemoglobin concentration in four muscles (thenar eminence, plantar fascia, sternocleidomastoid and forearm) of 14 healthy volunteers to highlight possible differences in microvascular hemodynamic oscillations. We observed larger PSDs for blood flow compared to hemoglobin concentration, in particular in case of distal muscles (i.e., thenar eminence and plantar fascia). Finally, we compared the PSDs measured on the thenar eminence of healthy subjects with the ones measured on a septic patient in the intensive care unit: lower power in the endothelial-dependent frequency band, and larger power in the myogenic ones were observed in the septic patient, in accordance with previous works based on laser doppler flowmetry

    Multibaryons in the collective coordinate approach to the SU(3) Skyrme model

    Get PDF
    We obtain the rotational spectrum of strange multibaryon states by performing the SU(3) collective coordinate quantization of the static multi-Skyrmions. These background configurations are given in terms of rational maps, which are very good approximations and share the same symmetries as the exact solutions. Thus, the allowed quantum numbers in the spectra and the structure of the collective Hamiltonians we obtain are also valid in the exact case. We find that the predicted spectra are in overall agreement with those corresponding to the alternative bound state soliton model.Comment: 16 pages, 1 figur

    Self-Consistent Quasi-Particle RPA for the Description of Superfluid Fermi Systems

    Get PDF
    Self-Consistent Quasi-Particle RPA (SCQRPA) is for the first time applied to a more level pairing case. Various filling situations and values for the coupling constant are considered. Very encouraging results in comparison with the exact solution of the model are obtained. The nature of the low lying mode in SCQRPA is identified. The strong reduction of the number fluctuation in SCQRPA vs BCS is pointed out. The transition from superfluidity to the normal fluid case is carefully investigated.Comment: 23 pages, 18 figures and 1 table, submitted to Phys. Rev.

    Jasmonate promotes auxin-induced adventitious rooting in dark-grown Arabidopsis thaliana seedlings and stem thin cell layers by a cross-talk with ethylene signalling and a modulation of xylogenesis

    Get PDF
    Background: Adventitious roots (ARs) are often necessary for plant survival, and essential for successful micropropagation. In Arabidopsis thaliana dark-grown seedlings AR-formation occurs from the hypocotyl and is enhanced by application of indole-3-butyric acid (IBA) combined with kinetin (Kin). The same IBA + Kin-treatment induces AR-formation in thin cell layers (TCLs). Auxin is the main inducer of AR-formation and xylogenesis in numerous species and experimental systems. Xylogenesis is competitive to AR-formation in Arabidopsis hypocotyls and TCLs. Jasmonates (JAs) negatively affect AR-formation in de-etiolated Arabidopsis seedlings, but positively affect both AR-formation and xylogenesis in tobacco dark-grown IBA + Kin TCLs. In Arabidopsis the interplay between JAs and auxin in AR-formation vs xylogenesis needs investigation. In de-etiolated Arabidopsis seedlings, the Auxin Response Factors ARF6 and ARF8 positively regulate AR-formation and ARF17 negatively affects the process, but their role in xylogenesis is unknown. The cross-talk between auxin and ethylene (ET) is also important for AR-formation and xylogenesis, occurring through EIN3/EIL1 signalling pathway. EIN3/EIL1 is the direct link for JA and ET-signalling. The research investigated JA role on AR-formation and xylogenesis in Arabidopsis dark-grown seedlings and TCLs, and the relationship with ET and auxin. The JA-donor methyl-jasmonate (MeJA), and/or the ET precursor 1-aminocyclopropane-1-carboxylic acid were applied, and the response of mutants in JA-synthesis and -signalling, and ET-signalling investigated. Endogenous levels of auxin, JA and JA-related compounds, and ARF6, ARF8 and ARF17 expression were monitored. Results: MeJA, at 0.01 ÎŒM, enhances AR-formation, when combined with IBA + Kin, and the response of the early-JA-biosynthesis mutant dde2–2 and the JA-signalling mutant coi1–16 confirmed this result. JA levels early change during TCL-culture, and JA/JA-Ile is immunolocalized in AR-tips and xylogenic cells. The high AR-response of the late JA-biosynthesis mutant opr3 suggests a positive action also of 12-oxophytodienoic acid on AR-formation. The crosstalk between JA and ET-signalling by EIN3/EIL1 is critical for AR-formation, and involves a competitive modulation of xylogenesis. Xylogenesis is enhanced by a MeJA concentration repressing AR-formation, and is positively related to ARF17 expression. Conclusions: The JA concentration-dependent role on AR-formation and xylogenesis, and the interaction with ET opens the way to applications in the micropropagation of recalcitrant species

    Cluster Monte Carlo and dynamical scaling for long-range interactions

    Get PDF
    Many spin systems affected by critical slowing down can be efficiently simulated using cluster algorithms. Where such systems have long-range interactions, suitable formulations can additionally bring down the computational effort for each update from O(N2N^2) to O(Nln⁥NN\ln N) or even O(NN), thus promising an even more dramatic computational speed-up. Here, we review the available algorithms and propose a new and particularly efficient single-cluster variant. The efficiency and dynamical scaling of the available algorithms are investigated for the Ising model with power-law decaying interactions.Comment: submitted to Eur. Phys. J Spec. Topic

    Pion light-cone wave function and pion distribution amplitude in the Nambu-Jona-Lasinio model

    Get PDF
    We compute the pion light-cone wave function and the pion quark distribution amplitude in the Nambu-Jona-Lasinio model. We use the Pauli-Villars regularization method and as a result the distribution amplitude satisfies proper normalization and crossing properties. In the chiral limit we obtain the simple results, namely phi_pi(x)=1 for the pion distribution amplitude, and = -M / f_pi^2 for the second moment of the pion light-cone wave function, where M is the constituent quark mass and f_pi is the pion decay constant. After the QCD Gegenbauer evolution of the pion distribution amplitude good end-point behavior is recovered, and a satisfactory agreement with the analysis of the experimental data from CLEO is achieved. This allows us to determine the momentum scale corresponding to our model calculation, which is close to the value Q_0 = 313 MeV obtained earlier from the analogous analysis of the pion parton distribution function. The value of is, after the QCD evolution, around (400 MeV)^2. In addition, the model predicts a linear integral relation between the pion distribution amplitude and the parton distribution function of the pion, which holds at the leading-order QCD evolution.Comment: mistake in Eq.(38) correcte

    Multibaryons as Symmetric Multiskyrmions

    Get PDF
    We study non-adiabatic corrections to multibaryon systems within the bound state approach to the SU(3) Skyrme model. We use approximate ansatze for the static background fields based on rational maps which have the same symmetries of the exact solutions. To determine the explicit form of the collective Hamiltonians and wave functions we only make use of these symmetries. Thus, the expressions obtained are also valid in the exact case. On the other hand, the inertia parameters and hyperfine splitting constants we calculate do depend on the detailed form of the ansatze and are, therefore, approximate. Using these values we compute the low lying spectra of multibaryons with B <= 9 and strangeness 0, -1 and -B. Finally, we show that the non-adiabatic corrections do not affect the stability of the tetralambda and heptalambda found in a previous work.Comment: 17 pages, RevTeX, no figure
    • 

    corecore