1,602 research outputs found

    Encoding a Qubit into a Cavity Mode in Circuit-QED using Phase Estimation

    Full text link
    Gottesman, Kitaev and Preskill have formulated a way of encoding a qubit into an oscillator such that the qubit is protected against small shifts (translations) in phase space. The idea underlying this encoding is that error processes of low rate can be expanded into small shift errors. The qubit space is defined as an eigenspace of two mutually commuting displacement operators SpS_p and SqS_q which act as large shifts/translations in phase space. We propose and analyze the approximate creation of these qubit states by coupling the oscillator to a sequence of ancilla qubits. This preparation of the states uses the idea of phase estimation where the phase of the displacement operator, say SpS_p, is approximately determined. We consider several possible forms of phase estimation. We analyze the performance of repeated and adapative phase estimation as the simplest and experimentally most viable schemes given a realistic upper-limit on the number of photons in the oscillator. We propose a detailed physical implementation of this protocol using the dispersive coupling between a transmon ancilla qubit and a cavity mode in circuit-QED. We provide an estimate that in a current experimental set-up one can prepare a good code state from a squeezed vacuum state using 88 rounds of adapative phase estimation, lasting in total about 4μ4 \mu sec., with 94%94\% (heralded) chance of success.Comment: 24 pages, 15 figures. Some minor improvements to text and figures. Some of the numerical data has been replaced by more accurate simulations. The improved simulation shows that the code performs better than originally anticipate

    Time-resolved X-ray microscopy of nanoparticle aggregates under oscillatory shear

    Full text link
    Of all current detection techniques with nanometer resolution, only X-ray microscopy allows imaging nanoparticles in suspension. Can it also be used to investigate structural dynamics? When studying response to mechanical stimuli, the challenge lies in applying them with precision comparable to spatial resolution. In the first shear experiments performed in an X-ray microscope, we accomplished this by inserting a piezo actuator driven shear cell into the focal plane of a scanning transmission X-ray microscope (STXM). Thus shear-induced reorganization of magnetite nanoparticle aggregates could be demonstrated in suspension. As X-ray microscopy proves suitable for studying structural change, new prospects open up in physics at small length scales.Comment: submitted to J. Synchrot. Radia

    Cultural and Strategic Factors in South Asian Nuclear Arms Control

    Get PDF
    Future efforts at arms control are shifting to LDCs. We believe future agreements is could look very different from their cold war predecessors because third world decision making processes are influenced by many unaddressed factors, ranging from culture to historical antagonism, in addition to strategic and technical concerns. Utilizing game theory as well as historical and cultural analysis, we examine likely possibilities for arms control agreements in South Asia as a case study, and then analyze the logic behind these possibilities. Our findings about the cultural mind set and political preferences of leaders and their constituents lead us toward a specific hypothesis about how these factors influence the decision making process, a direction for the future study of other regions

    Investigation of the Dzyaloshinskii-Moriya interaction and room temperature skyrmions in W/CoFeB/MgO thin films and microwires

    Full text link
    Recent studies have shown that material structures, which lack structural inversion symmetry and have high spin-orbit coupling can exhibit chiral magnetic textures and skyrmions which could be a key component for next generation storage devices. The Dzyaloshinskii-Moriya Interaction (DMI) that stabilizes skyrmions is an anti-symmetric exchange interaction favoring non-collinear orientation of neighboring spins. It has been shown that material systems with high DMI can lead to very efficient domain wall and skyrmion motion by spin-orbit torques. To engineer such devices, it is important to quantify the DMI for a given material system. Here we extract the DMI at the Heavy Metal (HM) /Ferromagnet (FM) interface using two complementary measurement schemes namely asymmetric domain wall motion and the magnetic stripe annihilation. By using the two different measurement schemes, we find for W(5 nm)/Co20Fe60B20(0.6 nm)/MgO(2 nm) the DMI to be 0.68 +/- 0.05 mJ/m2 and 0.73 +/- 0.5 mJ/m2, respectively. Furthermore, we show that this DMI stabilizes skyrmions at room temperature and that there is a strong dependence of the DMI on the relative composition of the CoFeB alloy. Finally we optimize the layers and the interfaces using different growth conditions and demonstrate that a higher deposition rate leads to a more uniform film with reduced pinning and skyrmions that can be manipulated by Spin-Orbit Torques

    Topsoil Selling - extreme anthropogenic erosion and its consequences for paddy soil quality (Mekong Delta, Vietnam)

    Get PDF
    Increasing urbanization and industrialization leads to rising demands for construction material, particularly in low-income countries. Thus, agricultural topsoil is sometimes removed and used as raw material e.g. for brick production. Topsoil selling (TSS) is practiced around the world from America, Europe, and Afrika to Asia. In the Mekong, Delta farmers sell the topsoil from their paddy fields to contractors. The temporal effects of topsoil removal on soil quality are not yet fully understood. We hypothesized that after soil removal, soil quality is significantly lower compared to the original topsoil. To test this hypothesis, we sampled paddy soil chronosequences in two different provinces, ranging between 1 and 8 years after TSS. Soil organic carbon (Corg) stocks at TSS sites were up to 20 t/ha lower than at control sites (control: 50 t/ha) in Sóc Trăng and up to 15 t/ha lower in Trà Vinh (control: 30 t/ha). The C/N ratio was nearly constant around 10. Analysis of inorganic nutrients (e.g. P, K, Na, S, Zn, Cu) showed that changes are variable in space, time and among nutrients. Annual average changes ranged from less than a kg per hectare and year for micronutrients (e.g. Cu, Zn) to several tens and hundreds of kg for macronutrients (e.g. P, S). The so far available data revealed that TSS induces mainly a dramatic loss of soil organic matter. It was ongoing up to the 8th year of the chronosequences but was not necessarily accompanied by losses in inorganic nutrients. As a result, there appears to be a chance for farmers in the Mekong Delta to overcome risks of soil quality decline after topsoil removal. Within the next months, we will receive the results from P- and S fractionation and also results from lignin analysis (lignin-derived phenols) will complement to the available data. Thus, we will gain further insights into soil evolution after topsoil selling shortly

    Stellar 36,38^{36,38}Ar(n,γ)37,39(n,\gamma)^{37,39}Ar reactions and their effect on light neutron-rich nuclide synthesis

    Full text link
    The 36^{36}Ar(n,γ)37(n,\gamma)^{37}Ar (t1/2t_{1/2} = 35 d) and 38^{38}Ar(n,γ)39(n,\gamma)^{39}Ar (269 y) reactions were studied for the first time with a quasi-Maxwellian (kT∼47kT \sim 47 keV) neutron flux for Maxwellian Average Cross Section (MACS) measurements at stellar energies. Gas samples were irradiated at the high-intensity Soreq applied research accelerator facility-liquid-lithium target neutron source and the 37^{37}Ar/36^{36}Ar and 39^{39}Ar/38^{38}Ar ratios in the activated samples were determined by accelerator mass spectrometry at the ATLAS facility (Argonne National Laboratory). The 37^{37}Ar activity was also measured by low-level counting at the University of Bern. Experimental MACS of 36^{36}Ar and 38^{38}Ar, corrected to the standard 30 keV thermal energy, are 1.9(3) mb and 1.3(2) mb, respectively, differing from the theoretical and evaluated values published to date by up to an order of magnitude. The neutron capture cross sections of 36,38^{36,38}Ar are relevant to the stellar nucleosynthesis of light neutron-rich nuclides; the two experimental values are shown to affect the calculated mass fraction of nuclides in the region A=36-48 during the weak ss-process. The new production cross sections have implications also for the use of 37^{37}Ar and 39^{39}Ar as environmental tracers in the atmosphere and hydrosphere.Comment: 18 pages + Supp. Mat. (13 pages) Accepted for publication in Phys. Rev. Let

    The 63^{63}Ni(n,γ\gamma) cross section measured with DANCE

    Get PDF
    The neutron capture cross section of the s-process branch nucleus 63^{63}Ni affects the abundances of other nuclei in its region, especially 63^{63}Cu and 64^{64}Zn. In order to determine the energy dependent neutron capture cross section in the astrophysical energy region, an experiment at the Los Alamos National Laboratory has been performed using the calorimetric 4π\pi BaF2_2 array DANCE. The (n,γ\gamma) cross section of 63^{63}Ni has been determined relative to the well known 197^{197}Au standard with uncertainties below 15%. Various 63^{63}Ni resonances have been identified based on the Q-value. Furthermore, the s-process sensitivity of the new values was analyzed with the new network calculation tool NETZ.Comment: 11 pages, 13 page
    • …
    corecore