24 research outputs found

    Quantitative assessment of Earthā€™s radiation belt modeling

    Full text link
    The ā€œQuantitative Assessment of Radiation Belt Modelingā€ focus group was in place at Geospace Environment Modeling from 2014 to 2018. The overarching goals of this focus group were to bring together the current stateā€ofā€theā€art models for the acceleration, transport, and loss processes in Earth's radiation belts; develop eventā€specific and global inputs of wave, plasma, and magnetic field to drive these models; and combine all these components to achieve a quantitative assessment of radiation belt modeling by validating against contemporary radiation belt measurements. This article briefly reviews the current understanding of radiation belt dynamics and related modeling efforts, summarizes the activities and accomplishments of the focus group, and discusses future directions.Accepted manuscrip

    Quantitative assessment of radiation belt modeling

    Full text link
    The ā€œQuantitative Assessment of Radiation Belt Modelingā€ focus group was in place at Geospace Environment Modeling from 2014 to 2018. The overarching goals of this focus group were to bring together the current stateā€ofā€theā€art models for the acceleration, transport, and loss processes in Earth's radiation belts; develop eventā€specific and global inputs of wave, plasma, and magnetic field to drive these models; and combine all these components to achieve a quantitative assessment of radiation belt modeling by validating against contemporary radiation belt measurements. This article briefly reviews the current understanding of radiation belt dynamics and related modeling efforts, summarizes the activities and accomplishments of the focus group, and discusses future directions.Accepted manuscrip

    Modeling radiation belt electron dynamics during GEM challenge intervals with the DREAM3D diffusion model

    Get PDF
    As a response to the Geospace Environment Modeling (GEM) ā€œGlobal Radiation Belt Modeling Challenge,ā€ a 3D diffusion model is used to simulate the radiation belt electron dynamics during two intervals of the Combined Release and Radiation Effects

    Event-specific chorus wave and electron seed population models in DREAM3D using the Van Allen Probes

    Get PDF
    Abstract The DREAM3D diffusion model is applied to Van Allen Probes observations of the fast dropout and strong enhancement of MeV electrons during the October 2012 double-dip storm. We show that in order to explain the very different behavior in the two dips, diffusion in all three dimensions (energy, pitch angle, and Lo) coupled with data-driven, event-specific inputs, and boundary conditions is required. Specifically, we find that outward radial diffusion to the solar wind-driven magnetopause, an event-specific chorus wave model, and a dynamic lower-energy seed population are critical for modeling the dynamics. In contrast, models that include only a subset of processes, use statistical wave amplitudes, or rely on inward radial diffusion of a seed population, perform poorly. The results illustrate the utility of the high resolution, comprehensive set of Van Allen Probes\u27 measurements in studying the balance between source and loss in the radiation belt, a principal goal of the mission. Key Points DREAM3D uses event-specific driving conditions measured by Van Allen Probes Electron dropout is due to outward radial diffusion to compressed magnetopause Event-specific chorus and seed electrons are necessary for the enhancement

    General Physics

    No full text

    General Physics

    No full text

    General Physics

    No full text

    General Physics

    No full text

    General Physics

    No full text
    corecore