203 research outputs found

    Tianshengyuan-1 (TSY-1) regulates cellular Telomerase activity by methylation of TERT promoter.

    Get PDF
    Telomere and Telomerase have recently been explored as anti-aging and anti-cancer drug targets with only limited success. Previously we showed that the Chinese herbal medicine Tianshengyuan-1 (TSY-1), an agent used to treat bone marrow deficiency, has a profound effect on stimulating Telomerase activity in hematopoietic cells. Here, the mechanism of TSY-1 on cellular Telomerase activity was further investigated using HL60, a promyelocytic leukemia cell line, normal peripheral blood mononuclear cells, and CD34+ hematopoietic stem cells derived from umbilical cord blood. TSY-1 increases Telomerase activity in normal peripheral blood mononuclear cells and CD34+ hematopoietic stem cells with innately low Telomerase activity but decreases Telomerase activity in HL60 cells with high intrinsic Telomerase activity, both in a dose-response manner. Gene profiling analysis identified Telomerase reverse transcriptase (TERT) as the potential target gene associated with the TSY-1 effect, which was verified by both RT-PCR and western blot analysis. The β-galactosidase reporter staining assay showed that the effect of TSY-1 on Telomerase activity correlates with cell senescence. TSY-1 induced hypomethylation within TERT core promoter in HL60 cells but induced hypermethylation within TERT core promoter in normal peripheral blood mononuclear cells and CD34+ hematopoietic stem cells. TSY-1 appears to affect the Telomerase activity in different cell lines differently and the effect is associated with TERT expression, possibly via the methylation of TERT promoter

    A randomized approach to speed up the analysis of large-scale read-count data in the application of CNV detection

    Get PDF
    Abstract Background The application of high-throughput sequencing in a broad range of quantitative genomic assays (e.g., DNA-seq, ChIP-seq) has created a high demand for the analysis of large-scale read-count data. Typically, the genome is divided into tiling windows and windowed read-count data is generated for the entire genome from which genomic signals are detected (e.g. copy number changes in DNA-seq, enrichment peaks in ChIP-seq). For accurate analysis of read-count data, many state-of-the-art statistical methods use generalized linear models (GLM) coupled with the negative-binomial (NB) distribution by leveraging its ability for simultaneous bias correction and signal detection. However, although statistically powerful, the GLM+NB method has a quadratic computational complexity and therefore suffers from slow running time when applied to large-scale windowed read-count data. In this study, we aimed to speed up substantially the GLM+NB method by using a randomized algorithm and we demonstrate here the utility of our approach in the application of detecting copy number variants (CNVs) using a real example. Results We propose an efficient estimator, the randomized GLM+NB coefficients estimator (RGE), for speeding up the GLM+NB method. RGE samples the read-count data and solves the estimation problem on a smaller scale. We first theoretically validated the consistency and the variance properties of RGE. We then applied RGE to GENSENG, a GLM+NB based method for detecting CNVs. We named the resulting method as “R-GENSENG". Based on extensive evaluation using both simulated and empirical data, we concluded that R-GENSENG is ten times faster than the original GENSENG while maintaining GENSENG’s accuracy in CNV detection. Conclusions Our results suggest that RGE strategy developed here could be applied to other GLM+NB based read-count analyses, i.e. ChIP-seq data analysis, to substantially improve their computational efficiency while preserving the analytic power

    Propamidine decreas mitochondrial complex III activity of Botrytis cinerea

    Get PDF
    Propamidine, an aromatic diamidine compound, is widely used as an antimicrobial agent. To uncover its mechanism on pathogenetic fungi, Botrytis cinerea as an object was used to investigate effects of propamidine in this paper. The transmission electron microscope results showed that the mitochondrial membranes were collapsed after propamidine treatment, followed that mitochondria were disrupted. Inhibition of whole-cell and mitochondrial respiration by propamidine suggested that Propamidine is most likely an inhibitor of electron transport within Botrytis cinerea mitochondria. Furthermore, the mitochondrial complex III activity were inhibited by propamidine. [BMB reports 2010; 43(9): 614-621

    miR394 Acts as a Negative Regulator of Arabidopsis Resistance to B. cinerea Infection by Targeting LCR

    Get PDF
    Gray mold of tomato is caused by the pathogen Botrytis cinerea. MicroRNAs play a crucial role in the biotic and abiotic stress responses of plants and regulate their targets by gene silencing. miR394 is an ancient and conserved miRNA in plants, and it participates in the regulation of plant development and stress responses. In our previous study, miR394 was found to respond to B. cinerea infection in tomato, but the roles and regulatory mechanisms of miR394 in B. cinerea-infected tomato remain unclear. miR394 was down-regulated in tomato in response to B. cinerea infection, showing an expression pattern opposite to the previous finding that miR394 was up-regulated in tomato cv. Jinpeng 1 infected by B. cinerea. We obtained transgenic Arabidopsis overexpressing miR394, which resulted in low expression levels of its target LEAF CURLING RESPONSIVENESS (LCR). Leaf lesion size and trypan blue staining showed that miR394 overexpression led to increased sensitivity of transgenic Arabidopsis to B. cinerea compared to wild type. We also detected changes in the expression levels of stress-related miRNAs, including miR159, miR156, miR168, and miR172. In the transgenic plants, it indicated potential cross talk between these miRNAs and miR394, except for miR159. miR394 also enhanced the expression of ARGONAUTE 1 (AGO1), DSRNA-BINDING PROTEIN 4 (DRB4) and the RNA-binding protein gene DAWDLE (DDL), which are involved in the pathways of miRNA biosynthesis and regulation, suggesting that miR394 overexpression has a feedback effect on these genes. Our data indicate that overexpression of miR394 in Arabidopsis increased the susceptibility of plants to B. cinerea by affecting the expression of its target gene LCR along with a number of key genes involved in plant miRNA metabolism (AGO1). Thus, miR394 is a negative regulator of Arabidopsis resistance to B. cinerea infection by targeting LCR

    Allele-specific copy-number discovery from whole-genome and whole-exome sequencing

    Get PDF
    Copy-number variants (CNVs) are a major form of genetic variation and a risk factor for various human diseases, so it is crucial to accurately detect and characterize them. It is conceivable that allele-specific reads from high-throughput sequencing data could be leveraged to both enhance CNV detection and produce allele-specific copy number (ASCN) calls. Although statistical methods have been developed to detect CNVs using whole-genome sequence (WGS) and/or whole-exome sequence (WES) data, information from allele-specific read counts has not yet been adequately exploited. In this paper, we develop an integrated method, called AS-GENSENG, which incorporates allele-specific read counts in CNV detection and estimates ASCN using either WGS or WES data. To evaluate the performance of AS-GENSENG, we conducted extensive simulations, generated empirical data using existing WGS and WES data sets and validated predicted CNVs using an independent methodology. We conclude that AS-GENSENG not only predicts accurate ASCN calls but also improves the accuracy of total copy number calls, owing to its unique ability to exploit information from both total and allele-specific read counts while accounting for various experimental biases in sequence data. Our novel, user-friendly and computationally efficient method and a complete analytic protocol is freely available at https://sourceforge.net/projects/asgenseng/

    NASICON-type air-stable and all-climate cathode for sodium-ion batteries with low cost and high-power density

    Get PDF
    The development of low-cost and long-lasting all-climate cathode materials for the sodium ion battery has been one of the key issues for the success of large-scale energy storage. One option is the utilization of earth-abundant elements such as iron. Here, we synthesize a NASICON-type tuneable Na4Fe3(PO4)2(P2O7)/C nanocomposite which shows both excellent rate performance and outstanding cycling stability over more than 4400 cycles. Its air stability and all-climate properties are investigated, and its potential as the sodium host in full cells has been studied. A remarkably low volume change of 4.0% is observed. Its high sodium diffusion coefficient has been measured and analysed via first-principles calculations, and its three-dimensional sodium ion diffusion pathways are identified. Our results indicate that this low-cost and environmentally friendly Na4Fe3(PO4)2(P2O7)/C nanocomposite could be a competitive candidate material for sodium ion batteries

    Synchronization of Circadian Clock Gene Expression in Arabidopsis and Hyaloperonospora arabidopsidis and its Impact on Host-Pathogen Interactions

    Get PDF
    Organisms across all kingdoms have an internal circadian clock running in 24h cycles. This clock affects a variety of processes, including innate immunity in plants. However, the role of pathogen circadian clocks had not been extensively explored. We previously showed that light can influence infection of the oomycete Hyaloperonospora arabidopsidis (Hpa, downy mildew disease) on its natural host Arabidopsis thaliana. Here, we identified Hpa orthologs of known circadian clock genes (CCGs) Drosophila TIMELESS (TIM) and Arabidopsis Sensitive to Red Light Reduced 1 (AtSRR1) genes. Expression of both HpaTIM and HpaSRR1 showed a circadian rhythm when Hpa was exposed to constant light. Contrastingly, these two genes were negatively regulated by constant dark exposure. Furthermore, the expression patterns of HpaTIM and HpaSRR1 correlate with those of AtCCA1 and AtLHY, indicating a synchronisation of biological clock genes between the host and the pathogen. In addition, screening mutants of Arabidopsis Clock Regulated Genes (AtCRGs) with three virulent Hpa isolates revealed that mutations in AtCRGs influenced HpaTIM and HpaSRR1 expression and Hpa development, indicating a functional link between the plant biological clock and virulence. Moreover, sporulation of Hpa was reduced by targeting HpaTIM and HpaSRR1 with short synthesized small interfering RNAs, indicating that the pathogen clock is also relevant to virulence. We propose that plant and pathogen clocks are synchronized during infection and that proper regulation of both clocks are genetically necessary for pathogen virulence
    • …
    corecore