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Abstract 

The permutation flowshop scheduling problem has been widely studied under static environment by 

assuming machines and jobs are available at the time of zero. However, in reality, new orders arrive at 

production systems randomly, which leads to sheer complexity in scheduling due to the dynamic 

changes given various constraints of resources. Previous studies simply attach new orders directly 

after the existing schedule. Recent study by Perez-Gonzalez and Framinan (2015) shows mixing jobs 

of old and new orders could result in better scheduling solutions. But the heuristic algorithms are still 

lacking to implement the job mixing policy. To address this problem, a novel scheduling strategy is 

herein proposed by integrating match-up strategy and real-time strategy (MR) in order to make use of 

the remaining time before the old order due date. Based on the new MR strategy, eleven new 

heuristics are introduced with ten existing and one new priority rules. Computational results illustrate 

the effectiveness of the new heuristics. A digital tool is developed for ease of application of these 

heuristics, and it is validated by case studies. 

Key words: Heuristics; Dynamic scheduling; New order; Permutation flowshop; Order mixing; 

1. Introduction 

Static scheduling has been studied for decades and many approaches have been developed especially 

for flowshops (see e.g., Liao and Huang 2010; Vasiljevic and Danilovic 2015; Liu, Jin, and Price 

2016). However, a static model could not fully reflect production reality. The scheduling problem in 

the presence of real-time events, termed dynamic scheduling, has begun to draw attention from 

industry and academia (Perez-Gonzalez and Framinan 2009; Perez-Gonzalez and Framinan 2010; 

Rahman, Sarker, and Essam 2015). Flowshop as an effective production model is widely used in 

industry, and lots of real-time events should be responded immediately. The real-time events include 

new order arrival (see e.g., Perez-Gonzalez and Framinan 2010; Rahman, Sarker, and Essam 2015), 

machine breakdown (see e.g., Safari and Sadjadi 2011), rush order (see e.g., Nandi and Rogers 2004) 

and varying processing time (see e.g., Xia, Chen, and Yue 2008; Li et al. 2015) etc. Among these 

disruptions, new orders arrive frequently in manufacturing industry especially for mass customized 

production. In reality, new orders arrive randomly associated with disparate arrival times and due 

dates which increases the complexity of the scheduling problem significantly. Many studies focus on 

job rescheduling with single-machine (see e.g., Tamer Unal, Uzsoy, and Kiran 1997), two-agent 

single-machine (see e.g., Feng et al. 2015; Kovalyov, Oulamara, and Soukhal 2015) or multi-agent 

single-machine (see e.g., Cheng, Ng, and Yuan 2006). Very few studies have been conducted to 

investigate the scheduling methods for m-machine flowshops which is more practical and common in 
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industry (Rahman, Sarker, and Essam 2015; Perez-Gonzalez and Framinan 2010). In this paper, the 

dynamic scheduling problem with new order arrival in permutation flowshops is studied. 

The objective is to minimize the maximum completion time of a new order while the due date of the 

old order has to be maintained. Note that each order may contain multiple jobs. It is a constraint 

optimization problem which is NP-hard in a strong sense especially when the slack between old order 

completion time and due date is very large (Perez-Gonzalez and Framinan 2010). Moreover, the 

problem is practical and meaningful for manufacturers as: 1) it is essential to set a reasonable and 

tight due date for the new order; 2) it is necessary to determine if the order is acceptable or not when 

the due date is assigned; 3) it helps to maximize the number of accepted orders so as to achieve the 

maximum revenue. This study aims to propose new heuristic algorithms for solving this problem. 

The existing scheduling approaches to handling newly arrived orders or rush orders can be classified 

into three categories (Herroelen and Leus 2004; Aytug et al. 2005): 1) reactive approach; 2) proactive 

approach; 3) predictive-reactive approach. Dispatching rule is a representative of the reactive 

approach. Different dispatching rules such as shortest processing time (SPT), first come first serve 

(FCFS), earliest due date (EDD) etc. are evaluated with respect to mean flowtime, maximum flowtime, 

maximum tardiness etc. when coping with newly arrived orders (Rajendran and Oliver 1999). Four 

dispatching rules are developed to minimize job tardiness and rejection cost for dynamic flexible 

flowshops (Kianfar, Fatemi Ghomi, and Karimi 2009). Other work on dispatching rules in dynamic 

flowshop can be found in (Lodree, Jang, and Klein 2004; Branke and Mattfeld 2005; El-Bouri, 

Balakrishnan, and Popplewell 2008). Although it can respond to uncertainties immediately, the 

schedule quality cannot be guaranteed by dispatching rules, because the schedule is constructed based 

on local information, i.e. job characteristic, rather than from the view of the whole schedule. When 

multi-job new orders arrive, two scenarios are differentiated (Perez-Gonzalez and Framinan 2010): 1) 

old order is ‘frozen’ that rescheduling of the old order is not allowed (Perez-Gonzalez and Framinan 

2009; Rahman, Sarker, and Essam 2015); 2) old order is ‘active’ that can be mixed and rescheduled 

with the new order (Perez-Gonzalez and Framinan 2010). When the old order is set as frozen, two 

strategies are developed including right shifting strategy (RS) and real-time strategy (RT) (Rahman, 

Sarker, and Essam 2015) to attach the new order after the existing schedule. Right shifting strategy 

means that new jobs are sequenced first under static environment, and then attached immediately after 

the old order. Jobs may be shifted to the right of the existing schedule given the machine availability. 

Real-time strategy is to schedule new jobs accounting the tail profile of the schedule of the old order. 

Three scheduling policies are proposed for solving three types of problems including classical 

scheduling problem (CSP), availability scheduling problem (ASP) and multi-agent scheduling 

problem (MSP) (Perez-Gonzalez and Framinan 2015). The policy for solving CSP is similar to the RS 

strategy, but the difference is new jobs are immediately processed once the old jobs are finished on 

the first machine by the RS strategy. For CSP, new jobs start to be processed after all old jobs are 

completed. The policy for ASP is the same as the RT strategy. For MSP, order mixing and job 

rescheduling is allowed. Their results show that the policy for MSP provides good makespan for new 

orders when the slack time (due date - completion time) of the old order is medium or high comparing 

to CSP and ASP. To the authors’ knowledge, very few heuristic algorithms have been developed for 

dynamic scheduling problems with mixed orders, except for the meta-heuristic developed by Perez-

Gonzalez and Framinan (2010). 

The proactive approach is also widely used to deal with uncertainties. By inserting idle times, a 

proactive schedule is generated to cope with machine breakdowns (see e.g., O’Donovan, Uzsoy, and 

McKay 1999; Zhu and Zhou 2014). A proactive algorithm considering processing time uncertainties 
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is developed for hybrid flowshop with the objective of makespan minimization of initial schedule and 

makespan deviation of initial and realized schedules (Chaari et al. 2011). Three models are developed 

with processing time variation for single-machine scheduling problems (Wu, Brown, and Beck 2009). 

Those proactive approaches based on anticipated disturbance are robust to uncertainties. However, 

only a limited number of disruptions can be absorbed. It is difficult and impractical to deal with new 

orders with proactive approaches. The information of orders such as order type, job processing times, 

arriving time, and due date etc. can hardly be predicted and simulated simultaneously. 

The predictive-reactive approach is commonly used as a scheduling method under uncertainty. Two 

steps are included: first, a predictive schedule is generated over the time horizon; then the existing 

schedule is modified to respond to uncertainties. This method can provide robust schedules and 

respond to uncertain events quickly. Match-up strategy (Bean and Birge 1986) is deemed as effective 

to handle rush order (Moratori, Petrovic, and Vázquez 2008), newly arrived order (Moratori, Petrovic, 

and Vázquez-Rodríguez 2012) or machine breakdown (Akturk and Gorgulu 1999) with an objective 

of schedule stability. It aims to catch up the schedule at a future point by adding jobs into the existing 

schedule when handling new jobs. Rush order is accommodated into the existing schedule by a 

match-up algorithm in a job shop (Moratori, Petrovic, and Vázquez 2008). A match-up algorithm is 

developed to schedule newly arrived jobs (Moratori, Petrovic, and Vázquez-Rodríguez 2012). 

However, only one job can be scheduled at one time and the algorithm cannot be applied to the orders 

consisting of multiple jobs associated with a common due date. 

In this paper, a novel strategy is proposed by integrating match-up strategy and real-time strategy with 

order mixing. The match-up strategy is used to insert selected jobs from the new order, and the real-

time strategy is applied for scheduling the rest jobs of the new order. Based on the new strategy, 

eleven new heuristics are developed and tested by using ten existing and one new priority rules. A 

digital tool is developed for implementing these algorithms automatically. 

The paper is organized as follows: In Section 2, the problem is defined and assumptions are given. 

Section 3 describes the new strategy, the new priority rule and the new heuristics. Experimental 

evaluations of these new heuristics are conducted in Section 4. In Section 5, the newly developed 

scheduling tool is presented in detail. Finally, conclusions are made in Section 6. 

2. Problem statement  

The problem studied in this paper is a constraint optimization problem which has been analysed in 

(Perez-Gonzalez and Framinan 2015). It is assumed that 𝑛𝑂 jobs belonging to the old order 𝐽𝑂 have 

been scheduled but not fully completed yet when 𝑛𝑁  jobs from the new order 𝐽𝑁  arrive at the 

production system. The jobs from the old order have a common due date 𝑑𝑂 which cannot be violated. 

Mathematically it can be expressed as  𝑇𝑚𝑎𝑥
𝐽𝑂 = 0 which means the maximum tardiness of jobs from 

the old order is 0. From the view of dynamic scheduling, it is assumed that many new orders will 

arrive continuously and randomly, but only one order arrives at one time. So order selection is not 

considered in this paper. In order to find the earliest due date for 𝐽𝑁, the objective is to minimize the 

maximum completion time of the new order 𝐶𝑚𝑎𝑥
𝐽𝑁  given the constraint of machine availability, ak, 

following the convention of (Perez-Gonzalez and Framinan 2009). The problem can be denoted as 

𝐹𝑚|𝑝𝑟𝑚𝑢, 𝑑𝑂 , 𝑎𝑘|𝐶𝑚𝑎𝑥
𝐽𝑁 /𝑇𝑚𝑎𝑥

𝐽𝑂 = 0  according to (Graham et al. 1979) where 𝐹𝑚  represents a 

flowshop with m machines, 𝑝𝑟𝑚𝑢 stands for permutation, 𝑑𝑂 indicates that all jobs from the old order 

have a common due date, 𝑎𝑘  represents the availability on machine k, and 𝐶𝑚𝑎𝑥
𝐽𝑁 /𝑇𝑚𝑎𝑥

𝐽𝑂 = 0  is a 
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constraint objective. Table 1 lists all the notations used in this paper. To define the problem, the 

assumptions are described as follows. 

1) All jobs should start as soon as possible; 

2) Processing time is known and deterministic; 

3) Setup time is included in processing time; 

4) Machines are continuously available but cannot process two or more jobs simultaneously; 

5) Job pre-emption is not permitted; 

6) Buffers’ capacity between machines is infinite; 

7) Only permutation schedules are allowed; 

8) Each order arrives randomly; 

9) Each order may contain one or multiple jobs; 

10) All jobs in an order should be finished before their due date; 

11) The job information is known after order arrives; 

12) Once the new order arrives, job rescheduling is activated; 

13) If all existing jobs are finished and no new jobs arrive, all machines stay idle and available; 

14) No more than two orders can be mixed together i.e. only the last old order can be 

rescheduled with the newly arrived order. 

Table 1 Notations 

Notation Description 

𝐽𝑂 Job set of the old order 

𝐽𝑁 Job set of the new order 

𝐷𝑂 Due date of the old order 

m Number of machines 

𝑛𝑂 Number of jobs belonging to the old order 

𝑛𝑁 Number of jobs belonging to the new order 

k Machine index, k ∈ [1,m] 

j Job index for the old order, j ∈ [1,𝑛𝑂] 

i Job index for the new order, i ∈ [1,𝑛𝑁] 

𝑡𝑖,𝑘 Processing time of job i on machine k 

𝐹𝑖 Indicator of weight distribution of processing times on front machines 

𝐵𝑖 Indicator of weight distribution of processing times on back machines 

𝑇𝑚𝑎𝑥
𝐽𝑂  The maximum tardiness of the old order 

𝐶𝑚𝑎𝑥
𝐽𝑁  The maximum completion time of the new order 

𝐴𝑉𝐺𝑖 The average of processing times of job i 

𝑆𝑇𝐷𝑖 The standard deviation of processing times of job i 

𝑆𝐾𝐸𝑖 The skewness of processing times of job i 

𝐾𝑈𝑅𝑖 The kurtosis of processing times of job i 

For an ‘active’ old order, the slack time between its due date and completion time has a direct impact 

on the schedule performance. If the slack time is very large, more jobs from the new order could be 

absorbed and scheduled before the due date of the old order. Herein, a relaxed and reasonable due 

date for the old order is assumed. 

To cope with this problem, a new strategy is proposed taking account of computational efficiency and 

solution quality. The details of the new heuristics are described in subsequent sections. 
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3. New heuristics based on match-up & real-time strategy 

3.1 New strategy: MR strategy 

The strength of RS and RT strategies exist in their efficiency at the cost of schedule quality. Ideally, 

the best schedule could be achieved by mixing new jobs together with uncompleted old jobs given the 

due date constraint. However, the computation time would be very long if a heuristic focuses on 

finding jobs from the new order given the large number of new jobs. To improve the schedule quality 

while maintaining the efficiency, a novel strategy is introduced by integrating match-up strategy 

(Bean and Birge 1986) and real-time strategy (Rahman, Sarker, and Essam 2015). 

In the new strategy, a limited search of mixed sequences is conducted by inserting some jobs from the 

new order into the old order. Jobs are normally finished before their due date and therefore, there is 

some space before the old order due date for some jobs from the new order. To fully utilize this slack, 

some jobs from the new order should be carefully selected and rescheduled with the remaining jobs of 

the old order. This idea is taken from the match-up strategy (Bean and Birge 1986) when handling 

rush orders that collect idletime on each machine and accommodate the new ones into the existing 

schedule. Figure 1 shows the structure of the newly generated schedule, including the completed jobs 

of the old order, the mixed jobs including the remaining jobs of the old order and the selected jobs 

from the new order, and the rest jobs of the new order. Herein, the slack between the old order due 

date and the completion time is taken as the accumulative idletime. The selected jobs from the new 

order are mixed and scheduled with the remaining jobs of the old order. The rest jobs of the new order 

are then scheduled by using the real-time strategy considering the profile of the reconstructed 

schedule. Therefore, the new strategy is called match-up & real-time strategy (MR).  

 
Figure 1 The structure of a generated schedule 

The flow chart of the MR strategy is shown in Fig. 2. First, all jobs from the new order are sorted by a 

priority rule, to determine the priority level for each job to be selected. Then, the number of jobs to be 

selected from the new order is determined based on the accumulative idletime on the last machine. 

Next, reschedule the mixed jobs including the remaining jobs of the old order together with the 

selected jobs from the new order. If the maximum completion time of these mixed jobs violates the 

due date constraint of the old order, the last selected job will be returned to the rest jobs of the new 

order, and the updated mixed jobs will be rescheduled again until the due date is satisfied. Note that 

the maximum completion time of the mixed jobs should be lower or equal to the due date of the old 

order. And it is used directly to determine if the old order due date is violated or not for heuristic 

efficiency as it will take extra time to compute the exact completion time of the old order. Finally, 

schedule the rest jobs of the new order by real-time strategy given the profile of the mixed jobs 

schedule. 
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Figure 2 Flow diagram of MR strategy 

There are three questions to answer in implementing MR strategy: 1) what kind of jobs should be 

selected from the new order to be mixed with the remaining old jobs; 2) how many jobs should be 

selected; 3) the job scheduling algorithm. The details of MR strategy are described below and the 

three questions are answered. 

3.2 Priority rule 

What kind of jobs should be selected? The job selection from the new order determines the schedule 

performance directly. The job priority rule in the MR strategy should be investigated first. Although 

many priority rules such as Johnson’s rule (Johnson 1954), dispatching rules, and priority rules (Dong, 

Huang, and Chen 2008; Kalczynski and Kamburowski 2008; Kalczynski and Kamburowski 2009) 

have been developed, there is no dedicated job sorting rule for achieving effective order mixing. In 

this section, a new rule based on Johnson’s rule is introduced exclusively for the MR strategy, and 

popular existing job priority rules are also used. 
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3.2.1 A new rule: Weighted Weight Distribution rule 

According to Johnson’s rule (Johnson 1954), the job with small processing times on front machines 

and large processing times on back machines should be prioritized with an objective of minimizing 

maximum completion time. In other words, the job with large processing times on front machines and 

small processing times on back machines should be scheduled last. Based on this idea, a new job 

sorting rule is proposed in consideration of weight distribution of job processing times on each 

machine. Jobs are sorted in the descending order of (𝐵𝑖 − 𝐹𝑖) where 

𝐵𝑖 = ∑ 𝑘 ∗ 𝑡𝑖,𝑘

𝑚

𝑘=1

,                                                                      (1) 

𝐹𝑖 = ∑(𝑚 + 1 − 𝑘) ∗ 𝑡𝑖,𝑘

𝑚

𝑘=1

.                                                           (2) 

𝐵𝑖  in Eq. (1) indicates how ‘heavy’ the job processing times are on back machines by allocating 

weights to processing times on each machine from 1 to m according to the processing order whereas 

𝐹𝑖 in Eq. (2) measures how ‘heavy’ of the job processing times are in the front. Because different 

weights are assigned to each machine, so the new rule is named as the weighted weight distribution 

rule (WWD). 

3.2.2 Conventional dispatching rules 

Many dispatching rules have shown effectiveness in scheduling with various criteria, such as total 

flowtime, makespan and tardiness. In this paper, it is assumed that all jobs from the new order arrive 

simultaneously with a common due date assigned. So the dispatching rules such as earliest due date, 

first come first serve, and last come first serve etc. cannot be applied. Only SPT and longest 

processing time (LPT) based on job processing time data are employed and implemented within the 

new MR strategy. 

3.2.3 Existing priority rules for NEH heuristic 

The NEH heuristic (Nawaz, Enscore Jr., and Ham 1983) is commonly regarded as the best 

constructive heuristic for static permutation flowshop scheduling problems with makespan criterion. 

The priority rule for the NEH heuristic can be applied to the dynamic problem where jobs are selected 

and scheduled according to their priorities. Until now, many priority rules have been developed and 

proven effective, such as rules in NEH-D (denoted by STD) (Dong, Huang, and Chen 2008), 

NEHKK1 (KK1) (Kalczynski and Kamburowski 2008), NEHKK2 (KK2) (Kalczynski and 

Kamburowski 2009), and rules (SKE, KUR, and LJP) in (Liu, Jin, and Price 2015) etc. The priority 

rule in the NEH heuristic (AVG) allocates high priorities to jobs with large sum of processing times 

on all machines. While the STD rule takes standard deviation of processing times into consideration. 

In SKE, KUR and LJP rules, higher moments of distributions of processing times including skewness 

and kurtosis are used for job differentiation. KK1 and KK2 are based on Johnson’s rule while 

different weights are allocated to processing times. 

To compare the effectiveness of all above priority rules, a random sequence (RND) is also taken as a 

reference. In total, eleven priority rules implemented with the new MR strategy are introduced, as 

shown in Table 2. Their performance will be compared in Section 4. 



8 

 

Table 2 Priority rules for the new MR strategy 

Heuristics Reference Priority rule 

MR_WWD Herein paper 
Descending order of (𝐵𝑖 − 𝐹𝑖) where 𝐵𝑖 = ∑ 𝑘 ∗ 𝑡𝑖,𝑘

𝑚

𝑘=1
 and 

𝐹𝑖 = ∑ (𝑚 + 1 − 𝑘) ∗ 𝑡𝑖,𝑘
𝑚

𝑘=1
 

MR_AVG 

(Nawaz, 

Enscore Jr., 

and Ham 

1983) 

Descending order of 𝐴𝑉𝐺𝑖 where 𝐴𝑉𝐺𝑖 =
1

𝑚
∑ 𝑡𝑖,𝑘

𝑚
𝑘=1  

MR_STD 

(Dong, 

Huang, and 

Chen 2008) 

Descending order of 𝐴𝑉𝐺𝑖+𝑆𝑇𝐷𝑖, where 

𝑆𝑇𝐷𝑖 = √
1

𝑚−1
∑ (𝑡𝑖,𝑘 − 𝐴𝑉𝐺𝑖)2𝑚

𝑘=1  

MR_SKE 
(Liu, Jin, and 

Price 2015) 

Descending order of 𝐴𝑉𝐺𝑖 + 𝑆𝑇𝐷𝑖 + 𝑎𝑏𝑠(𝑆𝐾𝐸𝑖), where 

𝑆𝐾𝐸𝑖 =
1

𝑚
∑ (𝑡𝑖,𝑘−𝐴𝑉𝐺𝑖)

3𝑚
𝑘=1

(√
1

𝑚
∑ (𝑡𝑖,𝑘−𝐴𝑉𝐺𝑖)

2𝑚
𝑘=1 )

3 

MR_KUR 
(Liu, Jin, and 

Price 2015) 

Descending order of 𝐴𝑉𝐺𝑖 + 𝑆𝑇𝐷𝑖 + 1/𝐾𝑈𝑅𝑖 where 𝐾𝑈𝑅𝑖 =
1

𝑚
∑ (𝑡𝑖,𝑘−𝐴𝑉𝐺𝑖)

4𝑚
𝑖=1

(
1

𝑚
∑ (𝑡𝑖,𝑘−𝐴𝑉𝐺𝑖)

2𝑚
𝑘=1 )

2 

MR_LJP 
(Liu, Jin, and 

Price 2015) 
Descending order of 𝐴𝑉𝐺𝑖 + 𝑆𝑇𝐷𝑖 + 𝑎𝑏𝑠(𝑆𝐾𝐸𝑖) + 1/𝐾𝑈𝑅𝑖 

MR_KK1 

(Kalczynski 

and 

Kamburowski 

2008) 

Non-increasing sum of weighted processing times min (𝑎1𝑖 , 𝑏1𝑖) 

where  𝑎1𝑖 = ∑ [
(𝑚−1)(𝑚−2)

2
+ 𝑚 − 𝑘]𝑚

𝑘=1 𝑡𝑖,𝑘,  𝑏1𝑖 =

∑ [
(𝑚−1)(𝑚−2)

2
+ 𝑘 − 1]𝑚

𝑘=1 𝑡𝑖,𝑘 

MR_KK2 

(Kalczynski 

and 

Kamburowski 

2009) 

Non-increasing sum of weighted processing times min (𝑎2𝑖 , 𝑏2𝑖) 

where  𝑎2𝑖 = ∑ 𝑡𝑖,𝑘
𝑚
𝑘=1 + ∑ (

ℎ−
3

4

𝑠−
3

4

− 𝜀)𝑠
ℎ=1 (𝑡𝑠+1−ℎ,𝑖 − 𝑡𝑡+ℎ,𝑖), 

 𝑏2𝑖 = ∑ 𝑡𝑖,𝑘
𝑚
𝑘=1 − ∑ (

ℎ−
3

4

𝑠−
3

4

− 𝜀)𝑠
ℎ=1 (𝑡𝑠+1−ℎ,𝑖 − 𝑡𝑡+ℎ,𝑖) and 

𝑠 = ⌊𝑚/2⌋, 𝑡 = ⌈𝑚/2⌉ 

MR_SPT  Ascending order of operation times on the first machine 

MR_LPT  Descending order of operation times on the first machine 

MR_RND  Random job sequence 

3.3 Number of selected jobs 

How many jobs should be selected from the new order for mixing with the remaining jobs of the old 

order? Obviously, the completion time on the last machine directly determines the length of 

production time. Therefore, the slack between the due date and completion time of the old order on 

the last machine can be deemed as the collected idletime and used to accommodate the selected jobs. 

Generally speaking, the larger the number of selected jobs from the new order to be accommodated in 

the slack, the better is the resulted schedule. So in the new strategy, the processing times of the 

selected jobs on the last machine are accumulated until no more jobs from the new order can be 

accommodated. 

3.4 Scheduling algorithm 

What algorithm should be used for scheduling? The job sequence of mixed jobs and rest jobs of the 

new order should be optimized by some algorithm. The problem has been transformed into a static 

permutation flowshop scheduling problem by the new strategy. Either heuristics or meta-heuristics 
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can be adopted. In order to save computation time, a heuristic algorithm, NEH heuristic, is chosen and 

implemented within the new MR strategy. Herein, RS and RT strategies are taken as references and 

the job scheduling is performed by the NEH heuristic as well, denoted by RS_NEH and RT_NEH. 

Therefore, eleven new heuristics are constructed by combining the new MR strategy and different 

priority rules. The effectiveness of these new heuristics is investigated in the subsequent sections. 

4. Experimental evaluation 

In order to evaluate the effectiveness of the new strategy, new WWD rule and new heuristics, an 

intensive analysis is conducted. The new heuristics are validated with references of RS_NEH and 

RT_NEH heuristics. The Taillard (Taillard 1993) and the VRF (Vallada, Ruiz, and Framinan 2015) 

benchmarks are used. Taillard test bed is the most widely used for the PFSP including 12 different 

size problems ranging from small size problem (n=20 and m=5) to large size problem (n=500 and 

m=20). Each problem includes 10 instances. VRF benchmark is the newest test bed with 480 

instances, including 240 for small size problems and 240 for large size problems. Therefore, 600 

instances in total are used for heuristic evaluation in the herein paper. 

To simulate the dynamic flowshop, each instance is divided into two halves in terms of the number of 

jobs: the first half of the instance is taken as the old order, while the second half is defined as the new 

order. The old order due date is set as (1 + 𝛼)𝐶𝑚𝑎𝑥
𝐽𝑂  where α ∈ [0.1, 1] is the relaxation factor and 

𝐶𝑚𝑎𝑥
𝐽𝑂  the maximum completion time of the old order obtained by the NEH heuristic. To evaluate each 

heuristic, the performance measure of relative percentage deviation (RPD) is computed as follows: 

𝑅𝑃𝐷 =
𝐶𝑚𝑎𝑥

𝐽𝑁 − 𝑈𝐵

𝑈𝐵
× 100%,                                                              (3) 

where 𝐶𝑚𝑎𝑥
𝐽𝑁  is the maximum completion time of the new order obtained by each heuristic on every 

instance, UB the upper bound for each instance. Herein, the UB values provided by Taillard (Taillard 

2015) and Vallada et al. (Vallada, Ruiz, and Framinan 2015) are used directly because they can be 

applied under all scenarios of 𝛼. All algorithms are coded in Matlab R2013b and run on a CPU E5520 

computer with 6.00G memory. 

The relaxation factor α affects the performance of new heuristics directly. First, different values are 

assigned to α in order to check the impact of the due date on the new heuristic performance. Figures 3 

and 4 shows the test results of the new heuristic based on the MR strategy and the WWD rule on 

Taillard and VRF benchmarks respectively. 

As shown in Fig. 3, with α increasing, the average RPD (ARPD) value of MR_WWD decreases 

gradually, and it is much better than that of RS_NEH and RT_NEH. The performance of MR_WWD 

improves as the relaxation factor increase. With a large relaxation of α, more new jobs can be 

accommodated by the old order due date and the probability of obtaining a better schedule improves. 

The honest significant differences intervals (HSD) between MR_WWD and RS_NEH and RT_NEH 

heuristics do not intersect when α ≥0.2. 

It is essential to verify the effectiveness of the new strategy on the VRF benchmark as it is a new hard 

benchmark. Figure 4 shows the similar trend that MR_WWD achieves lower APRDs with larger 

values of α. But the performance of MR_WWD stays steady after α=0.4. This is because the slack 

time before the old order due date is large enough to accommodate the new order when α≥0.4. To 
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investigate the performance of all new heuristics, a reasonable and relaxed due date is set that α is 

defined as 0.4, the same value as defined in (Perez-Gonzalez and Framinan 2010). 

 
Figure 3 Means and 95% HSD intervals for RS_NEH, RT_NEH and MR_WWD on Taillard 

benchmark with different α 

Table 3 shows the test results of each heuristic on different size problems on Taillard benchmark in 

terms of ARPD with α=0.4. Eleven priority rules are implemented within the MR strategy 

respectively. The table shows that the new heuristic MR_WWD performs the best in most situations 

with an ARPD value of 5.74, much better than that of RT_NEH (8.40) and RS_NEH (17.05). On 

10/12 problems, MR_WWD generates the best solution and MR_SPT is the best on the rest of 

problems. Note that all priority rules within the MR strategy have a better performance than RT_NEH 

except for MR_LPT and MR_RND, proving the effectiveness of the new strategy. Among all MR 

strategy based heuristics, MR_WWD outperforms the others, followed by MR_SPT, MR_STD, 

MR_KUR, MR_AVG, MR_LJP, MR_SKE, MR_KK2, MR_KK1, MR_RND and MR_LPT heuristics.  

The results of each heuristic on VRF test bed are shown in Tables 4 and 5. The same conclusion can 

be drawn that MR_WWD has the best performance with an ARPD of 3.59, with 56.95% and 78.12% 

improvement comparing to RS_NEH and RT_NEH heuristics. On small instances, the ARPD of 

MR_WWD heuristic is 3.87, and it can achieve the best on 12 out of 24 problems. Other MR based 

heuristics dominate on the other problems. On large instances, MR_WWD has the lowest ARPD of 

3.31, much better than the RS_NEH and RT_NEH heuristics. All MR strategy based heuristics except 

MR_RND are more effective than RS_NEH and RT_NEH. 

To identify statistically significant differences among all examined heuristics, 95% HSD intervals of 

ARPDs for each heuristic are calculated, as shown in Fig.5 and Fig. 6 on different test beds. It is 

concluded that on Taillard benchmark, MR_WWD performs significantly better than RS_NEH and 

RT_NEH heuristics. Significant differences between MR_WWD and MR_AVG, MR_STD, 
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MR_SKE, MR_KUR, MR_LJP, MR_KK1, MR_KK2, MR_SPT, MR_LPT, and MR_RND can also 

be observed. On VRF benchmark, all MR strategy based heuristics shows significant differences 

comparing to RS_NEH and RT_NEH heuristics except for MR_RND. 

 
Figure 4 Means and 95% HSD intervals for RS_NEH, RT_NEH and MR_WWD on VRF benchmark 

with different α 

To further confirm the statistically significant differences between heuristics, the paired-samples t test 

is conducted with a confidence level of 95%. Key results are shown in Tables 6 and 7. These results 

are consistent with above conclusions that significant differences exist between MR_WWD and other 

heuristics on Taillard. On VRF benchmark, the differences are also significant except for MR_AVG, 

MR_STD, MR_SKE, MR_KUR, and MR_LJP heuristics. This is because MR strategy is used in all 

these heuristics. 
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Figure 5 Means plot and 95% HSD intervals of each heuristic on Taillard benchmark 

 
Figure 6 Means plot and 95% HSD intervals of each heuristic on VRF benchmark 



13 

 

Table 3 ARPD values of each heuristic on Taillard test bed with α=0.4 

Problem RS_NEH RT_NEH 
MR strategy 

WWD AVG STD SKE KUR LJP KK1 KK2 SPT LPT RND 

20×5 19.95 10.35 6.51 10.11 11.39 11.71 11.39 11.71 10.23 9.76 7.36 14.75 9.95 

20×10 19.36 11.14 9.46 10.60 9.59 9.51 9.59 9.51 12.16 10.78 11.04 13.49 11.54 

20×20 18.09 10.86 3.73 3.73 3.73 3.73 3.73 3.73 3.81 3.81 3.73 3.81 11.05 

50×5 11.83 5.28 2.78 4.52 4.92 4.94 5.02 4.92 3.65 3.88 4.11 9.64 5.81 

50×10 22.90 11.09 8.24 9.70 9.04 9.08 9.04 9.08 11.43 10.94 8.86 15.55 10.79 

50×20 23.00 12.10 9.19 11.43 11.30 11.44 11.30 11.44 12.56 12.62 12.62 13.65 13.44 

100×5 10.45 3.77 1.71 2.99 2.68 2.74 2.72 2.67 2.93 3.46 2.14 9.29 3.85 

100×10 15.30 7.25 4.61 6.70 6.82 6.75 6.82 6.79 6.68 6.23 5.56 12.46 7.20 

100×20 20.16 10.98 8.01 9.93 9.82 9.88 9.82 9.88 10.66 10.31 10.03 13.19 10.75 

200×10 12.43 4.11 3.05 4.19 4.25 4.23 4.35 4.22 3.96 3.72 3.03 11.51 4.13 

200×20 18.24 8.94 7.03 8.05 8.27 8.49 8.33 8.30 8.31 8.34 7.81 14.3 8.91 

500×20 12.83 4.94 4.60 4.94 4.55 4.62 4.57 4.64 4.97 4.83 4.54 12.75 4.93 

AVG 17.05 8.40 5.74 7.24 7.20 7.26 7.22 7.24 7.61 7.39 6.73 12.03 8.53 
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Table 4 ARPD values of each heuristic on small problems of VRF test bed with α=0.4 

Problem(S) RS_NEH RT_NEH 
MR strategy 

WWD AVG STD SKE KUR LJP KK1 KK2 SPT LPT RND 

10×5 14.25 8.09 2.06 2.98 2.98 2.98 2.98 2.98 3.16 3.16 3.16 3.42 9.32 

10×10 10.93 5.54 1.63 1.63 1.63 1.63 1.63 1.63 1.63 1.63 1.63 1.63 5.97 

10×15 12.94 7.43 1.53 1.53 1.53 1.53 1.53 1.53 1.53 1.53 1.53 1.53 7.72 

10×20 13.44 6.71 1.99 1.99 1.99 1.99 1.99 1.99 1.99 1.99 1.99 1.99 6.17 

20×5 18.43 7.65 1.53 1.51 1.53 1.53 1.53 1.53 1.53 1.53 1.53 1.51 8.37 

20×10 22.85 12.95 4.82 4.82 4.82 4.82 4.82 4.82 4.82 4.82 4.82 4.82 13.32 

20×15 19.32 11.26 4.29 4.33 4.33 4.33 4.33 4.33 4.33 4.29 4.29 4.33 12.03 

20×20 18.16 10.49 4.12 4.12 4.12 4.12 4.12 4.12 4.12 4.12 4.12 4.12 10.52 

30×5 14.82 5.16 1.64 1.43 1.41 1.41 1.41 1.41 1.98 1.98 1.86 1.43 4.85 

30×10 22.82 12.33 5.26 5.26 5.19 5.19 5.19 5.19 5.18 5.18 5.26 5.18 11.81 

30×15 25.97 14.67 5.73 5.83 5.83 5.83 5.83 5.83 5.73 5.73 5.74 5.87 14.01 

30×20 19.73 11.67 5.41 5.41 5.41 5.41 5.41 5.41 5.41 5.41 5.41 5.41 11.51 

40×5 13.49 5.42 1.20 1.50 1.34 1.34 1.34 1.34 1.74 1.74 1.20 1.70 5.05 

40×10 22.31 12.41 4.97 4.97 4.94 4.94 4.94 4.94 4.94 4.97 4.94 4.97 11.97 

40×15 22.64 12.13 6.08 6.05 6.02 6.02 6.02 6.02 5.95 5.95 6.11 5.90 12.50 

40×20 21.88 13.13 5.16 5.14 5.28 5.28 5.28 5.28 5.28 5.28 5.30 5.14 11.66 

50×5 12.14 4.38 1.05 1.06 0.85 0.85 0.85 0.85 1.39 1.39 1.60 1.62 3.61 

50×10 20.09 10.40 4.45 4.58 4.47 4.47 4.50 4.47 4.57 4.55 4.56 4.57 10.71 

50×15 22.77 12.52 6.38 6.52 6.65 6.65 6.65 6.65 6.52 6.52 6.36 6.62 12.41 

50×20 21.56 11.97 5.91 5.96 5.79 5.79 5.79 5.79 5.84 5.84 5.79 5.96 11.26 

60×5 12.35 3.59 1.51 1.25 1.18 1.08 1.18 1.08 1.36 1.31 1.89 2.38 3.69 

60×10 18.74 10.25 3.81 3.96 4.00 4.00 4.00 4.00 4.24 4.24 4.25 4.02 10.67 

60×15 22.73 12.12 5.97 5.79 6.12 6.12 6.12 6.12 5.90 6.04 6.04 6.11 11.86 

60×20 20.52 12.06 6.44 6.45 6.43 6.43 6.43 6.43 6.51 6.56 6.53 6.51 13.01 

AVG(S) 18.54 9.76 3.87 3.92 3.91 3.91 3.91 3.91 3.99 3.99 4.00 4.03 9.75 
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Table 5 ARPD values of each heuristic on large problems of VRF test bed with α=0.4 

Problem(L) RS_NEH RT_NEH 
MR strategy 

WWD AVG STD SKE KUR LJP KK1 KK2 SPT LPT RND 

100×20 20.82 10.75 5.63 5.71 5.74 5.74 5.74 5.74 5.78 5.75 5.62 5.82 10.88 

100×40 18.07 9.97 5.48 5.47 5.51 5.51 5.51 5.51 5.53 5.53 5.53 5.53 10.15 

100×60 17.00 9.52 4.76 4.95 4.84 4.84 4.84 4.84 4.94 4.98 4.91 4.68 9.03 

200×20 17.29 8.37 4.17 4.23 4.36 4.36 4.36 4.34 4.27 4.08 4.22 4.26 8.66 

200×40 17.61 9.40 4.74 4.71 4.68 4.68 4.68 4.68 4.90 4.88 4.68 4.74 9.60 

200×60 16.05 8.74 4.40 4.55 4.43 4.43 4.43 4.43 4.36 4.30 4.46 4.39 8.72 

300×20 14.52 6.79 3.03 3.00 3.19 3.14 3.08 3.14 3.07 2.95 2.96 3.06 6.67 

300×40 16.20 8.07 4.02 4.08 4.13 4.12 4.13 4.10 4.09 4.01 4.03 4.12 8.05 

300×60 15.30 8.01 3.98 3.93 3.96 4.00 3.96 4.00 4.00 4.02 4.01 4.11 7.84 

400×20 13.34 5.77 2.48 2.58 2.46 2.49 2.46 2.48 2.41 2.48 2.43 2.51 5.55 

400×40 14.76 7.20 3.54 3.66 3.62 3.68 3.62 3.67 3.66 3.71 3.66 3.55 7.30 

400×60 14.51 7.12 3.62 3.56 3.52 3.54 3.57 3.51 3.60 3.63 3.59 3.57 7.20 

500×20 12.34 4.86 2.05 2.27 2.06 2.00 2.02 1.95 1.98 2.06 2.01 2.03 4.93 

500×40 13.93 6.66 3.09 3.20 3.19 3.11 3.20 3.17 3.25 3.21 3.13 3.11 6.65 

500×60 14.03 6.88 3.28 3.12 3.26 3.21 3.23 3.18 3.36 3.16 3.27 3.26 6.90 

600×20 10.97 4.27 1.72 1.57 1.74 1.66 1.69 1.67 1.75 1.70 1.69 1.68 4.13 

600×40 13.51 6.05 3.07 3.13 3.00 3.02 2.95 3.00 2.95 2.86 3.09 2.95 6.31 

600×60 12.99 6.43 2.88 2.93 2.97 2.98 2.96 2.97 2.92 3.02 2.91 2.95 6.52 

700×20 10.39 4.09 1.38 1.40 1.46 1.44 1.46 1.44 1.41 1.51 1.41 1.43 4.06 

700×40 12.81 5.96 2.71 2.77 2.79 2.69 2.77 2.70 2.82 2.69 2.80 2.68 5.88 

700×60 12.78 6.19 2.71 2.75 2.78 2.75 2.78 2.73 2.80 2.78 2.81 2.76 6.08 

800×20 9.49 3.79 1.29 1.23 1.30 1.28 1.31 1.31 1.30 1.29 1.30 1.28 3.67 

800×40 11.93 5.32 2.60 2.46 2.47 2.53 2.50 2.55 2.45 2.64 2.54 2.56 5.21 

800×60 12.13 5.76 2.71 2.71 2.74 2.76 2.79 2.75 2.65 2.70 2.73 2.84 5.84 

AVG(L) 14.28 6.92 3.31 3.33 3.34 3.33 3.34 3.33 3.34 3.33 3.32 3.33 6.91 

AVG 16.41 8.34 3.59 3.63 3.63 3.62 3.62 3.62 3.66 3.66 3.66 3.68 8.38 
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Table 6 Paired-samples t test on Taillard benchmark 

Pairs Mean SEM Lower Upper t Sig.  

RS_NEH-RT_NEH 8.64500 .27213 8.10616 9.18383 31.768 .000 

RS_NEH-MR_WWD 11.30092 .36875 10.57075 12.03109 30.646 .000 

RT_NEH-MR_WWD 2.65592 .26131 2.13850 3.17334 10.164 .000 

MR_WWD-MR_AVG -1.49726 .21128 -1.91561 -1.07891 -7.087 .000 

MR_WWD-MR_STD -1.45275 .21767 -1.88376 -1.02173 -6.674 .000 

MR_WWD-MR_SKE -1.51702 .21634 -1.94539 -1.08865 -7.012 .000 

MR_WWD-MR_KUR -1.47950 .21820 -1.91156 -1.04744 -6.780 .000 

MR_WWD-MR_LJP -1.49760 .21630 -1.92591 -1.06930 -6.924 .000 

MR_WWD-MR_KK1 -1.86925 .19663 -2.25859 -1.47990 -9.506 .000 

MR_WWD-MR_KK2 -1.64609 .19875 -2.03964 -1.25254 -8.282 .000 

MR_WWD-MR_SPT -.99050 .17683 -1.34065 -.64036 -5.601 .000 

MR_WWD-MR_LPT -6.28837 .35899 -6.99919 -5.57754 -17.517 .000 

MR_WWD-MR_RND -2.78358 .26992 -3.31804 -2.24911 -10.313 .000 

Table 7 Paired-samples t test on VRF benchmark 

Pairs Mean SEM Lower Upper t Sig. 

RS_NEH-RT_NEH 8.07032 .12962 7.81563 8.32501 62.263 .000 

RS_NEH-MR_WWD 12.82062 .19122 12.44488 13.19636 67.046 .000 

RT_NEH-MR_WWD 4.75030 .12072 4.51310 4.98750 39.351 .000 

MR_WWD-MR_AVG -.03690 .02675 -.08945 .01565 -1.380 .168 

MR_WWD-MR_STD -.03684 .02622 -.08836 .01468 -1.405 .161 

MR_WWD-MR_SKE -.03010 .02601 -.08121 .02102 -1.157 .248 

MR_WWD-MR_KUR -.03403 .02629 -.08569 .01764 -1.294 .196 

MR_WWD-MR_LJP -.02807 .02609 -.07934 .02319 -1.076 .283 

MR_WWD-MR_KK1 -.07517 .03319 -.14039 -.00995 -2.265 .024 

MR_WWD-MR_KK2 -.07178 .03335 -.13731 -.00624 -2.152 .032 

MR_WWD-MR_SPT -.07145 .02987 -.13015 -.01275 -2.392 .017 

MR_WWD-MR_LPT -.09016 .04042 -.16957 -.01075 -2.231 .026 

MR_WWD-MR_RND -4.74069 .11762 -4.97180 -4.50959 -40.307 .000 

5. Digital tool for dynamic scheduling 

In order to ease of application for these algorithms and automatically obtain the scheduling results, a 

digital tool has been developed in Matlab R2013b. The interface of the digital tool is shown in Fig. 7. 

The goal is to set a tight common due date for the new order or to determine if the new order is 

acceptable or not. 

One old order and one new order containing job information should be loaded first respectively. The 

file format of each order is shown in Fig. 8. In the file, each row is associated with one job. In each 

row, every pair of data represents the machine index and its processing time for the job. For the case 

shown in Fig. 8, there are 20 jobs and 5 machines. For the first job, the processing times on the five 

machines are 54, 79, 16, 66 and 58 respectively. The due date of the old order is necessary and it has 

to be input. If the due date of the new order is not given, the software tool will automatically set the 

objective as to find a tight due date. Otherwise, the objective is to determine if the new order should 

be accepted or not. After inputting all essential variables, one can select the target algorithm for 

scheduling from provided candidate heuristics such as RS_NEH, RT_NEH, MR_WDD or MR_AVG 

heuristics etc. as shown in Fig. 9. 
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Finally, press the button ‘Run’ and the objective value can be automatically generated as well as the 

job sequence and acceptance status. If the makespan of the new order is larger than its due date, it will 

be shown rejected in the box of acceptance status. If no due date is assigned, the acceptance status 

will be shown ‘N/A’. The Gantt chart of the schedule can be generated after pressing ‘Output Gantt 

Chart’. An example is shown in Fig. 10. The best schedule can be chosen after running all candidate 

heuristics by users. 

 
Figure 7 Interface of the scheduling digital tool 

  
Figure 8 Order file format Figure 9 Drop-down menu of algorithms 

A case study is conducted to validate the digital tool. The instance TA001 of Taillard benchmark is 

used where the old order is taken from the first half of the instance while the new order is the second 

half. The due date of the old order is set as 1087.8, as explained in Section 4. Once loading all job 

information and inputting necessary variables, i.e. due date of the old order, MR_WWD is selected 

and run. The completion time, acceptance status, and job sequence can be automatically obtained by 

the digital tool as well as the Gantt chart of the schedule if it is in need. The results obtained by the 

digital tool are shown in Fig. 11, which are exactly as expected. 
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Figure 10 A Gantt chart example 

 

Figure 11 Output of the case study 

6. Conclusions 

A new strategy named MR strategy is proposed for the permutation flowshop scheduling problem 

with new order arrivals. By using the new MR strategy, order mixing is achieved and a better 

schedule is obtained. One new priority rule named as weighted weight distribution (WWD) is 

proposed. Eleven different priority rules including WWD rule are tested and eleven new heuristics 

based on the new MR strategy are developed. 

By using the new heuristics, the due date setting problem is solved. Tests are conducted on both 

Taillard and VRF benchmarks including 600 instances in total. Results of evaluations show that the 

new heuristics, especially MR_WWD are effective in solving the dynamic scheduling problem. The 

performance is improved by 66.33% and 31.67% comparing to existing RS_NEH and RT_NEH on 

Taillard benchmark. 78.12% and 56.95% improvements are obtained on VRF benchmark. A digital 

scheduling tool for dynamic permutation flowshops is developed and validated by implementing these 

algorithms automatically. 

Based on the newly proposed strategy and heuristic algorithms, meta-heuristic methods will be 

investigated to tackle the dynamic scheduling problem in the near future. 
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