4,387 research outputs found

    Recent development in beta titanium alloys for biomedical applications

    Get PDF
    © 2020 by the authors. Licensee MDPI, Basel, Switzerland. β-type titanium (Ti) alloys have attracted a lot of attention as novel biomedical materials in the past decades due to their low elastic moduli and good biocompatibility. This article provides a broad and extensive review of β-type Ti alloys in terms of alloy design, preparation methods, mechanical properties, corrosion behavior, and biocompatibility. After briefly introducing the development of Ti and Ti alloys for biomedical applications, this article reviews the design of β-type Ti alloys from the perspective of the molybdenum equivalency (Moeq) method and DV-Xα molecular orbital method. Based on these methods, a considerable number of β-type Ti alloys are developed. Although β-type Ti alloys have lower elastic moduli compared with other types of Ti alloys, they still possess higher elastic moduli than human bones. Therefore, porous β-type Ti alloys with declined elastic modulus have been developed by some preparation methods, such as powder metallurgy, additive manufacture and so on. As reviewed, β-type Ti alloys have comparable or even better mechanical properties, corrosion behavior, and biocompatibility compared with other types of Ti alloys. Hence, β-type Ti alloys are the more suitable materials used as implant materials. However, there are still some problems with β-type Ti alloys, such as biological inertness. As such, summarizing the findings from the current literature, suggestions forβ-type Ti alloys with bioactive coatings are proposed for the future development

    Probing the A1 to L10 Transformation in FeCuPt Using the First Order Reversal Curve Method

    Full text link
    The A1- L10 phase transformation has been investigated in (001) FeCuPt thin films prepared by atomic-scale multilayer sputtering and rapid thermal annealing (RTA). Traditional x-ray diffraction is not always applicable in generating a true order parameter, due to non-ideal crystallinity of the A1 phase. Using the first-order reversal curve (FORC) method, the A1 and L10 phases are deconvoluted into two distinct features in the FORC distribution, whose relative intensities change with the RTA temperature. The L10 ordering takes place via a nucleation-and-growth mode. A magnetization-based phase fraction is extracted, providing a quantitative measure of the L10 phase homogeneity.Comment: 17 pages, 5 figures, 4 page supplementary material (4 figures

    Carbonated Drinks Impact Follicle Development, Expression of Ovarian FSHR and Serum Caspase-3 in Mice

    Get PDF
    Objectives: The present study aimed to assess the effects of Coca-Cola and Pepsi-Cola on the development of ovaries and follicles, and on the reproduction of animals

    Dose-dependent effects of luteinizing hormone and follicle stimulating hormone on in vitro maturation, apoptosis, secretion function and expression of follicle stimulating hormone receptor and luteinizing hormone receptor of sheep oocytes

    Get PDF
    TThe present study compared the effects of follicle stimulating hormone (FSH) and luteinizing hormone (LH) on in vitro maturation (IVM), apoptosis, and secretion function in sheep oocytes, as well as gene expressions of the receptors (FSHR, LHR, and GnRHR) in cumulus-oocyte complexes (COCs). The COCs were recovered from sheep ovaries and pooled in groups. The COCs were cultured for 24 hours in IVM medium supplemented with various concentrations of LH (5–30 μg/mL) and FSH (5–30 IU/mL). They were allocated to LH-1 (5 µg/mL), LH-2 (10 µg/mL), LH-3 (20 µg/mL), and LH-4 (30 µg/mL) groups, and FSH-1 (5 IU/mL), FSH-2 (10 IU/mL), FSH-3 (20 IU/mL), and FSH-4 (30IU/mL) groups. The apoptosis of COCs was assessed by terminal deoxynucleotidyl transferase dUTP nick end labelling (TUNEL). The maturation rates of oocytes improved gradually as LH and FSH concentration increased from 0 to 10 μg/mL(IU/mL), reaching a peak value of 44.1% of LH-2 and 48.5% of FSH-2 group. Oocyte apoptosis rates of LH-2 and FSH-2 groups were the lowest among LH- and FSH-treated groups, respectively. The germinal vesicle breakdown (GVBD) rate of the FSH-2 group was higher than that of the control group (CG) and FSH-4 groups. The GVBD rate of LH-2 group also increased in comparison with the CG group. FSH concentration of the FSH-2 group was greater than that of CG. Expression levels of FSHR, LHR, and GnRHR mRNAs of FSH-2, LH-3, and LH-3 group, respectively, were higher than CG. Levels of FSHR proteins in FSH-2 and FSH-3 groups were greater than CG. Levels of GnRHR proteins were increased with a maximum increment of FSH-4. The FSH and LH supplemented into the IVM medium could promote the maturation rate, reduce the apoptosis rate of sheep oocytes, and increase FSH concentrations in IVM medium fluid. Additionally, FSH and LH enhanced expression levels of FSHR, LHR, and GnRHR mRNAs of sheep COCs.Keywords: Apoptosis, cumulus-oocyte complexes, germinal vesicle breakdown, protein expression, recepto
    • …
    corecore