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Abstract: β-type titanium (Ti) alloys have attracted a lot of attention as novel biomedical materials in
the past decades due to their low elastic moduli and good biocompatibility. This article provides
a broad and extensive review of β-type Ti alloys in terms of alloy design, preparation methods,
mechanical properties, corrosion behavior, and biocompatibility. After briefly introducing the
development of Ti and Ti alloys for biomedical applications, this article reviews the design of
β-type Ti alloys from the perspective of the molybdenum equivalency (Moeq) method and DV-Xα
molecular orbital method. Based on these methods, a considerable number of β-type Ti alloys are
developed. Although β-type Ti alloys have lower elastic moduli compared with other types of
Ti alloys, they still possess higher elastic moduli than human bones. Therefore, porous β-type
Ti alloys with declined elastic modulus have been developed by some preparation methods, such as
powder metallurgy, additive manufacture and so on. As reviewed, β-type Ti alloys have comparable
or even better mechanical properties, corrosion behavior, and biocompatibility compared with other
types of Ti alloys. Hence, β-type Ti alloys are the more suitable materials used as implant materials.
However, there are still some problems with β-type Ti alloys, such as biological inertness. As such,
summarizing the findings from the current literature, suggestions forβ-type Ti alloys with bioactive
coatings are proposed for the future development.

Keywords: beta titanium; biomedical implants; porous materials; properties; additive manufacturing

1. Introduction

Thanks to their excellent mechanical properties, good corrosion resistance, as well as commendable
biocompatibility, titanium (Ti) and its alloys are extensively applied in various fields, especially
in the biomedical field [1–6]. According to their microstructures in terms of phase constituents,
Ti alloys can be roughly categorized into α-type Ti alloys, (α + β)-type Ti alloys, and β-type Ti
alloys. By comparing other metallic materials for biomedical applications, Ti and Ti alloys have lower
density, higher specific strength, and better corrosion resistance than stainless steels and Co–Cr-based
alloys [7,8]. For instance, commercially pure titanium (CP–Ti), one of the α-type Ti alloys, has been
used as implant materials for nearly half of a century as the first generation of Ti biomaterials [2,8,9].
Initially, CP–Ti was developed to replace stainless steels and Co–Cr alloys for implants since stainless
steels and Co–Cr-based alloys contain unfriendly elements, including Ni, Co, and Cr [2,10]. However,
some hard tissues or load-bearing connective tissues have higher requirement of mechanical properties;
CP–Ti may not satisfy this requirement due to its moderate strength [11,12]. To get rid of this
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limitation, α + β-type Ti alloys were emerged at the right moment and they generally have higher
strength than α-type Ti alloys [2,10,11,13]. Typically, Ti–6Al–4V (in wt.%; the same hereafter unless
indicated) is the most frequently employed α + β-type Ti alloy, accounting for 50% of Ti products
besides CP–Ti [14]. Nevertheless, Ti–6Al–4V contains toxic V which is harmful to the human body.
As such, new dual-phase Ti alloys are developed to replace Ti–6Al–4V, such as Ti–6Al–7Nb and
Ti–5Al–2.5Fe [2,10,15–17]. For long-term implantation, α + β-type Ti alloys exhibit good performance
owing to their excellent fatigue resistance and good corrosion resistance [18,19]. However, Al is still
a questionable element in α + β-type Ti alloys since intaking excessive Al can trigger Alzheimer’s
disease [20]. In addition, the elastic modulus is another important factor to evaluate the availability
of Ti implants. The mismatch elastic moduli between implant and human bone would result in the
stress-shielding effect, which is a potential hazard to patients and results in the bone adsorption [2,21].
The elastic modulus of human cortical bone is about 30 GPa, while those of Ti–6Al–7Nb and Ti–6Al–4V
are about 110 GPa and 112 GPa [2,18]. Therefore, the moduli of dual-phase Ti alloys are significantly
higher than that of the human cortical bone. Things have come a long way since β-type Ti alloys
were designed and developed. β-type Ti alloys contain higher amounts of β-stabilizers (such as Mo,
Ta, and Zr) and hence have dominant β phase in the microstructure. Due to the non-toxic nature of
β-stabilizers, β-type Ti alloys not only have the decreased elastic moduli but also possess improved
biocompatibility compared with other types of Ti alloys [22–24]. For instance, the elastic modulus of
Ti–24Nb–4Zr–8Sn is about 46–55 GPa [25], which is significantly lower than those of dual-phase Ti
alloys. Therefore, β-type Ti alloys have a significantly important position in the biomedical field.

As is known, β-type Ti alloys have been developed in the last three decades. Ti–13Nb–13Zr alloys
were firstly applied to the biomedical industry in the 1990s, which have been investigated with respect
to the microstructure, phase transformations, and properties for many years [26–32]. Some other
β-type Ti alloys were developed in the later years and some techniques and/or approaches were
developed some well-known β-type Ti alloys as well, for instance, Ti–15Mo [33–36], Ti–Nb–Ta [37–39],
Ti–24Nb–4Zr–8Sn [25,40–44], Ti–35Nb–2Ta–3Zr [45–50], Ti–35Nb–5Ta–7Zr [51–54], Ti–30Nb–4Sn [55,56],
Ti–35Nb [57–60], Ti–15Nb–3Mo–3Zr–2Sn [61–64], and so on. However, some raw materials, including
Nb, Zr, and Ta, are rare; therefore, the cost of β-type Ti alloys is increased. The high melting points
of these materials also lead to the difficulty in the preparation of β-type Ti alloys by traditional
technologies [65]. Therefore, low-cost β-type Ti alloys with low-cost alloying elements, such as Cr,
Mn, and Fe, are developed recently [66]. As such, many new β-type Ti alloys found their ways into
biomedical fields, such as Ti–Mo–Zr–Fe series [67], Ti–15Mo–5Zr–3Al [68], Ti–15Mo–3Nb–3Al [69],
Ti–12Mo–5Ta [70], Ti–Fe–Sn series [71], Ti–Fe–Ta series [72,73], Ti–Nb–Fe series [74–76], Ti–Zr–Fe–Cr
series [77–79], and so on. Due to their better biocompatibility and low cost, such β-type Ti alloys would
be the promising biomedical materials in the future. Therefore, various investigations ofβ-type Ti alloys
have been focusing on improving their properties and tailoring their microstructures. Yang et al. [67]
found that the corrosion–wear phenomenon of Ti–12Mo–6Zr–2Fe (TMZF) would be accelerated in
the simulated body fluid, which is attributed to the absence of strain hardening. Satendra et al. [80]
compared Ti–15Mo with CP–Ti and Ti–6Al–4V alloys by electrochemical measurement in the Ringer’s
solution and demonstrated that Ti–15Mo alloy has the best corrosion resistance. Afonso et al. [81]
investigated the influence of rapid solidification on Ti–xNb–3Fe alloys (x = 10, 15, 20, 25, 30, and 35 wt.%)
and found that the elastic moduli of Ti–xNb–3Fe alloys are related to the microstructure resulted from
rapid solidification. Amigó et al. [82] investigated the effects of Fe content (1.5, 3.0, and 4.5 wt.%)
on the microstructures and mechanical properties of Ti–35Nb–10Ta–xFe alloys produced by powder
metallurgy. The addition of Fe slightly enhanced the stability of alloys but declined the maximum
strength and deformability owing to the increased porosity.

Up to date, biomedical β-type Ti alloys have been developed for over thirty years.
Therefore, this review aims to give an overall comprehension of biomedical β-type Ti alloys.
In this review, an introduction to the development of biomedical Ti and Ti alloys is first presented.
As such, the significance of β-type Ti alloys can be understood. Afterward, the alloy design
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and processing of β-type Ti alloys are briefly introduced to know how to obtain Ti alloys with a
body-centered cubic (BCC) structure at room temperature. With the development of preparation
methods, new techniques, such as additively manufacturing, porous powder metallurgy and
FAST-forge technology (field-assisted sintering technology, followed by forging), provide brand
new ways to produce porous β-type Ti alloys with lower elastic moduli compared with the bulk
counterparts. Such techniques shed insight into the preparation of β-type Ti alloys with extremely
low moduli. Finally, the properties of β-type Ti alloys, such as the mechanical properties, corrosion
behavior, and even biocompatibility, are reviewed in comparison to other types of Ti alloys.

2. Design and Processing of Biomedical β-type Titanium Alloys

Similar to other hexagonal metals and alloys, Ti exhibits a hexagonal close-packed structure
(HCP, α-Ti) at room temperature and transforms into a BCC β-Ti above the β transus temperature
(883 ◦C for Ti) [22,83–87]. Therefore, to obtain β-type Ti alloys at room temperature, the addition
of a relatively high fraction of β-stabilizers, such as Mo, Nb, Ta, Fe, and Cr, is required [46,88,89].
Such β-stabilizing elements expand the β region and form infinite solid solutions with Ti above the β
transus temperature in the binary phase diagrams [90,91]. Therefore, generally, Ti alloys would consist
of a metastable BCC β-phase after quenching from the temperature above β transus temperature if the
addition of β-stabilizers exceeds a critical concentration. For example, a 10 wt.% addition of Mo in
Ti–Mo binary alloys can form an infinite solid solution above 400 ◦C [91]; Ti–Nb binary alloys with
35 wt.% Nb would form an infinite solid solution above 425 ◦C [90]. However, a metastable BCC
β-phase would decompose into an HCP α′-martensite phase and/or the orthorhombic α′′-martensite
in the condition of energy disturbance (including heat treatment and deformation) [72,74]. In such a
situation, it is possible to add enough β-stabilizers to lower the β transus temperature below room
temperature in principle, thereby resulting in stable β-type Ti alloys.

Usually, the molybdenum equivalency (Moeq) method is used to predict the β phase stability of
β-type Ti alloys, which is expressed as the following Equation (1):

Moeq = [Mo] + [Ta]
5 +

[Nb]
3.6 +

[W]
2.5 +

[V]
1.5 + 1.25[Cr] + 1.25[Ni] + 1.7[Mn]

+1.7[Co] + 2.5[Fe] − [Al]
(1)

where [x] indicates the content of the element [x] in wt.%. This equation is used to evaluate the
equivalent effect of β-stabilizers in Ti alloys. Mo is selected as the baseline and normalizes other
elements to an equivalent Mo value. Conversely, Al (α-stabilizer) plays a subtracted role in the Moeq

value. Other α-stabilizers, such as Zr, Sn, O, and N, can also be calculated as Al equivalency (Aleq),
according to the following equation:

Aleq = [Al] +
[Zr]
5.9

+
[Sn]

3
+

[0 + N]

0.1
(2)

where [x] also indicates the content of the element [x] in wt.%. As such, total Moeq can be calculated for
a variety of Ti alloys. Minor variations may be reported for these two equations, because of the critical
concentrations of elements between the American and Russian data [1].

A Moeq value of approximately 10.0 is required to obtain 100% BCC β-phase after quenching
from the β phase region [91]. The β transus temperature is lowered as the value of Moeq increases.
The Moeq values and β transus temperatures for some commercially β-Ti alloys and newly designed
low-cost β-type Ti alloys as well as their elastic moduli are summarized in Table 1. As listed in
Table 1, various Ti alloys are designed with different chemical compositions; a higher Moeq generally
results in more stable β-Ti alloys. The Moeq method plays a significant role in designing new β-Ti
alloys and has facilitated the development of a wide range of β-Ti alloys in the past decades, such as
the Ti–Mo series [92,93], Ti–13Nb–13Zr [30,94], Ti–20Nb–10Zr–5Ta [95], Ti–11.5Mo–6Zr–4.5Sn [96,97],
Ti–35Nb–5Ta–7Zr [51,98], and Ti–29Nb–13Ta–4.6Zr [99]. Notably, Mo, Zr, Ta, and Nb metals have
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higher density than Ti. Therefore, alloying with such elements would increase the density of Ti alloys.
As implants, the increase in weight may cause discomfort for the patients. As mentioned earlier, Mo,
Zr, Ta, and Nb are also expensive, and the use of these elements would increase the cost of β-Ti alloys.
Moreover, these alloying elements possess high melting points, inevitably causing difficulty in the
alloy preparation. As such, new low-cost β-Ti alloys have been developed in recent years based on the
molybdenum equivalency method, which primarily contains low-cost alloying elements, such as Fe,
Mn, Sn, and Cr [71,72]. Such newly designed low-cost β-Ti alloys also exhibit favorable properties for
biomedical applications [100].

Table 1. Molybdenum equivalency (Moeq), β transus temperatures, and elastic modulus of some
commercially β-Ti alloys and newly designed low-cost β-type Ti alloys.

Alloy Type Moeq
Beta Transus

(◦C)
Elastic Modulus

(GPa) Ref.

Ti–13Nb–13Zr β-rich 1.4 735 79–84 [1,101]
Ti–24Nb–4Zr–8Sn β-rich 1.6 - 46–55 [25]
Ti–33Zr–3Fe–2Cr Near-β 4.4 - 138–143 [77]

Ti–20Nb–10Zr–5Ta Near-β 5.0 - 59 [102]
Ti–5Al–2Sn–2Cr–4Mo–4Zr–1Fe Near-β 5.0 891 - [1]

Ti–4.5Al–3V–2Mo–2Fe Near-β 5.4 900 110 [1,103]
Ti–5Al–2Sn–2Zr–4Mo–4Cr Near-β 5.5 884 112 [1,103]

Ti–5Al–5Mo–1Cr–1Fe Near-β 8 849 - [1]
Ti–10V–2Fe–3Al Near-β 9.6 805 110 [1,103]

Ti–29Nb–13Ta–4.6Zr Metastable 10.2 - 80 [2]
Ti–25Nb–8Zr–4Cr Metastable 10.6 - 50 [79]
Ti–26Nb–4Zr–3Mn Metastable 11.6 - 32 [104]

Ti–11Nb–3.5Fe Metastable 11.8 - 101 [76]
Ti–25Nb–3Sn–4Cr Metastable 11.9 - 75–80 [105]

Ti–11.5Mo–6Zr–4.5Sn Metastable 12.0 744 83–103 [1,103]
Ti–5V–3Cr–3Sn–3Al Metastable 12.2 760 - [1]

Ti–15Mo–2.6Nb–3Al–2Si Metastable 13.1 806 89 [1,106]
Ti–35Nb–2Ta–3Zr Metastable 13.9 - 44 [45]

Ti–15Mo Metastable 14.8 726 78 [1,101]
Ti–12Mo–6Zr–2Fe Metastable 16.8 - 74–85 [103]

Ti–4.5Fe–6.5Mo–1.5Al Metastable 18.0 801 - [1]
Ti–7Fe–11Nb Metastable 20.5 - 110 [74]
Ti–8Fe–5Ta Metastable 21.0 - 118–124 [72]

Ti–6V–6Mo–5.7Fe–2.7Al Metastable 23.8 704 - [107]
Ti–27Nb–7Fe–2Cr Metastable 26.8 - 108 [108]

Another important design method is the DV-Xα molecular orbital design method [108].
In this method, two key parameters are used, namely, bond order (Bo) and metal d-orbital energy
level (Md). Bo indicates the covalent bond strength between metal Ti and an alloying element, and Md
represents the metal d-orbital energy level of transition metals as alloying elements, which is determined
by the metallic radius of elements and the electronegativity. Correspondingly, Morinaga et al.
established [109–111] the Bo−Md diagram to utilize the theoretical approach of the d electron theory;
Bo and Md are average values for Bo and Md. This method not only indicates the phase stability
and phase constituents of Ti alloy but also can predict their mechanical properties [112]. The Bo−Md
diagram has been reported in Ref. [101,108,111]. Therefore, many β-type Ti alloys have been developed
based on this DV-Xαmolecular orbital design method.

According to the aforementioned methods, a variety of β-type Ti alloys were designed and
produced in the past [96,113]. Generally, β-type Ti alloys are produced by solidification/casting [93].
Recently, Chirico et al. [114] reported a method to produce β-type Ti alloys using titanium hydride
as feedstock by powder metallurgy. Such a method enhances the densification of Ti compacts,
gets better control of contamination, and reduces the cost of raw materials. On the other hand,
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to obtain a required shape, the produced Ti bulks must undergo thermo-mechanical processing
and/or heat treatment, which can also tailor the microstructures of β-type Ti alloys, especially for
metastable β-type Ti alloys. As reported in the literature, general thermo-mechanical processing,
including forging, rolling, and extrusion, was conducted on β-type Ti alloys to produce rods, sheets,
and/or tubes, respectively [113]. In the meantime, β-type Ti alloys are heat treatable and can be heated at
solution-treated temperature followed by aging to enhance their strength [1]. The phase transformation
of β→α, β→α′ and/or β→α′′ takes place during aging in the solution-treated metastable β-type Ti
alloys, hence causing dispersion strengthening [72]. However, the strength of most β-type Ti alloys
have satisfied strength to meet the requirement for use as implants. Therefore, extensive attention has
been paid to decrease the elastic moduli of β-type Ti alloys to avoid the stress-shield effect. Although
β-type Ti alloys have lower elastic moduli compared with other types of Ti alloys, the elastic moduli
of β-type Ti alloys are still higher than those of the human bones. Therefore, porous β-type Ti alloys
(other types of Ti and Ti alloys) [41,115–119], in which their strength is sacrificed to obtain lower
moduli, are produced by new preparation methods.

3. Some Preparation Methods for Porous β-type Ti Alloys

As seen in Figure 1, the elastic modulus of human bone is about 30 GPa, while the lowest elastic
modulus of Ti–29Ni–13Ta–7.1Zr alloy is 55 GPa. The mismatch of elastic modulus between the implant
and adjacent bones would result in the stress-shielding effect [120]. When the stress-shielding effect
takes place, the bone would reduce the mass, namely, bone resorption [119,121,122]. It has reported that
the stress-shielding effect would lead to the thinning of the bone (external remodeling) or it becoming
more porous (internal remodeling) [119,121,122]. Meanwhile, the relative movement between the
implant and the adjacent bone would take place owing to the modulus mismatch. Under the extreme
situation, bone ingrowth would be inhibited so that implant osseointegration is unsuccessful [119].
Fortunately, the development of porous materials could effectively lower the moduli of Ti and Ti alloys
and therefore enable the possibility of the stress-shielding effect. The porous structure not only lowers
the elastic moduli of Ti alloys but also enhances tissue adhesion and promotes the ingrowth of bone
cells [116,123]. Therefore, it is necessary to develop porous β-type Ti alloys for the actual applications.
Up to now, there are a variety of preparation methods for porous materials, such as sintering, investment
casting, and rapid prototyping [10,124]. The various preparation methods would lead to the different
properties of Ti and Ti alloys. Currently, two primary methods are frequently employed for preparing
porous β-type Ti alloys, namely, powder metallurgy and additive manufacturing.

3.1. Powder Metallurgy

Powder metallurgy (PM) uses the powder of pure metals, blends, or alloys as raw materials,
and it produces metallic parts by forming and/or sintering [125–130]. Before the process of PM,
the powder would be compressed in a mold, which aims to attain the required shapes and dimensions
of the model [23,125,131–133]. Afterward, the sintering process is conducted under a protective
atmosphere in a high-temperature stove or a vacuum stove. PM allows the fabrication of amorphous
materials, solid solutions as well as intermetallic phases from components with different melting
points [131,134–136]. In addition, PM technology has high design freedom and could fabricate metallic
parts with porous structures on a large scale [10]. The porous metallic parts manufactured by PM
may have different types of pores, such as through holes and blind holes [10]. For porous implants,
the size and morphology of pores should be controlled in the PM process, which has influences on bone
ingrowth, osteointegration, and the fatigue resistance of the implants [137]. PM has been employed to
produce Ti and Ti alloys for many years [138]. In recent years, porous Ti alloys are prepared by PM
technologies for biomedical applications. Among various PM technologies, spark plasma sintering
and the space holder method are commonly used for producing porous Ti and Ti alloys.

Spark plasma sintering (SPS) is a rapid sintering process, which employs the external current to
assist powder consolidation [2,10]. SPS directly exerts a pulse current between powder particles for
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heating and sintering the powder. Hence, sometimes, SPS is also called plasma-activated sintering,
electrical field-activated sintering, or electrical discharge compaction [10]. The SPS device includes a
power supply (impulse current generator), pressure control, and vacuum chamber. Before sintering,
metal powder is put into a mold and applied with pressing pressure as well as current. Subsequently,
the powder used would experience discharge activation, thermoplastic deformation, and cooling.
Finally, a high-performance part would be obtained. As such, SPS is a novel technology using electric
energy combined with mechanical energy. SPS technology is frequently used in the biomedical
field, which results in high biomechanical properties and the osteoconductivity of prepared porous
materials [139]. The advantages of low sintering temperature, low electric pressure, and short time
make SPS become a priority for porous Ti and its alloys [2]. Hussein et al. [140] successfully prepared
nanostructured near-β Ti–20Nb–13Zr by SPS, and the results showed that a structure with nearly full
density is obtained after SPS at 1200 ◦C. Sintering at the temperature below 1200 ◦C can obtain a porous
structure (Figure 1a). The obtained alloy was chemically homogenized with a microhardness value
ranging from 620 HV to 660 HV (Figure 1b). The developed Ti–20Nb–13Zr alloy prepared by SPS is
proposed for dental and/or orthopedic applications.
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Figure 1. Spark plasma-sintered Ti–20Nb–13Zr at different temperatures: (a) relative density and
(b) hardness. (Reproduced with permission from ref. [140]. Copyright (2015), Elsevier).

The space holder method is another PM technology, which is a modification of conventional powder
metallurgy [141]. The space holder method uses mixed metal powder and spacer particles as raw
materials. The spacer particles act as pore formers to assure the homogeneity of the mixture [141,142].
Then, the mixed powder is put into a mold and compressed together under a controlled pressure to form
a solid part [10,142–144]. Afterward, either sintering or removal of the spacer (depending on the type
of spacer) is used in the process, therefore leaving behind the new pores in the matrix [10,142]. As such,
the shape, size, and distribution of the pores, as well as the porosity, all depend on the selected spacer
particles [10]. Therefore, it is important to select an appropriate spacer material with low reactivity,
which can be removed under relatively low temperatures [2,10]. This method is simple and easy to
operate. For example, porous β-type Ti–10Nb–10Zr, with macropores of 300-800 µm and micropores
of several microns, is successfully fabricated by this method [145]. The raw powder was primarily
mixed with an ammonium hydrogen carbonate spacer. The size of the spacer was about 500-800 µm.
Before sintering, the mixture is compressed to compact in a mold. Subsequently, the compact is sintered
in two steps: (i) burning out the spacer (175 ◦C for 2 h) and (ii) sintering the compact (1200 ◦C for 10 h).
According to this procedure, the porous β-type Ti–10Nb–10Zr with different porosity can be produced
by adding different fractions of ammonium hydrogen carbonate spacer. By varying the fraction
of the spacer, the porosity of produced porous β-type Ti–10Nb–10Zr can be controlled; therefore,
the mechanical properties could be manipulated. Porous Ti–35Nb–5Ta–7Zr, Ti–10Mo, and porous
Ti–24Nb–4Zr–8Sn (other types of Ti and Ti alloys as well) have also been successfully produced by this
method [146,147]. However, it also has some limits to produce porous materials. The accuracy of the
pores is low, which may influence the structure of the produced porous material [2].
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3.2. Additive Manufacturing

Additive manufacturing (AM), namely, 3D printing, is based on the discrete-collecting principle
to achieve parts prototyping [148–151]. In contrast to traditional subtractive manufacturing,
AM techniques fabricate three-dimensional solid parts by a layer-by-layer method from bottom
to top [148,152–154]. There is a range of advantages of AM techniques, including their short
production cycle, simple machining process, fast commissioning, and high material utilization
rate [155]. More prominently, AM could prepare parts with complex geometry quickly and accurately,
which is far more advantageous than the traditional subtractive manufacturing process [152,155–157].
Through years of exploration and practice, AM could be used to produce metallic parts, such as Ti
and Ti alloys, using laser or electron beam as heat sources from computer-aided designed (CAD)
models [149,158]. In recent years, AM-produced porous Ti alloys attracted a lot of attention;
selective laser melting (SLM) and electron beam melting (EBM) stand in the breach in producing
high-performance metallic parts [155,159–161].

The SLM device mainly contains a controlling computer system, a laser emitter, a scanning system,
and an automatic powder feeder [156]. During the SLM process, metal powder is selectively heated up
to complete melting by a computer-controlled laser beam and then quickly solidifies in a protective
atmosphere [156]. When the manufacturing of one layer is finished, the build platform would lower by
the thickness of a layer. Subsequently, the powder feeding system sends newly applied powder from
a moving container and deposits a new layer of powder on the previously formed solid layer [162].
As such, this process is repeated until the entire CAD model is built. As such, SLM is a layer-wise
process, which uses a scanning laser beam to selectively melt the metal powder to produce the metallic
components with designed geometry (from a CAD model) [156]. In general, the pre-set processing
parameter set determines the properties of components. For instance, the relative density is closely
related to the laser energy, which is defined as [163]:

E =
P

vts
(3)

where P is the laser power (W), v is the scan speed (mm s−1), t is the layer thickness (mm), and s is
scan spacing (mm). E is a function of these key parameters for the solidification and the quality of
SLM-produced β-Ti components, thereby determining their performances. As shown in Figure 2a,
Zhang et al. [25] used different laser scanning speeds to fabricate Ti–24Nb–4Zr–8Sn alloy and found
that there is a gradual decrease in the density and hardness with increasing scanning speed (Figure 2a).
A similar operation on laser energy density would also influence the properties of porous β-type Ti
alloys [41,164]. In addition to the processing parameters, the structure of porous β-type Ti alloy is
also a main factor influencing their properties. Liu et al. [159] investigated the manufacturing and
mechanical behavior of 3 porous structures (cubic, topology optimized, and rhombic dodecahedron) for
Ti–24Nb–4Zr–8Sn. As seen from the typical compressive stress–strain curves of these three structures
(Figure 2b), the rhombic dodecahedron structure distinctly exhibits lower compressive strength.
The cubic structure and topology-optimized structure show similar maximum compressive strengths
of 56 MPa and 58 MPa, respectively. The distinctions in the compressive properties of β-type Ti alloys
with different structures are attributed to their different energy absorption behaviors in the initial stage
of deformation. Regardless of their strength, such porous β-type Ti alloys show significantly low
moduli (approaching 1.3–3.3 GPa) compared with the bulk Ti–24Nb–4Zr–8Sn counterparts produced
by SLM (53 GPa) [25,159].
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In the early development of SLM technology, only a few Ti alloys were produced due to the
lack of pre-alloyed powder, especially the powder from β-type Ti alloys. Therefore, several β-type
Ti alloys were produced by mixed powder. Zhao et al. [165] used a Ti–25Nb blend to produce
the alloy and found some unmelted Nb particles in the microstructure. Vrancken et al. [166] used
Ti–6Al–4V–ELI pre-alloyed powder mixed with 10 wt.% Mo powder to produce a novel metastable β
titanium metallic composite and found residual Mo particles in the microstructure. Similar results are
also observed for other selective laser melted β-type Ti alloys, such as Ti–35Nb [57], Ti–25Nb [165],
Ti–26Nb [167,168], Ti–50Ta [169,170], Ti–37Nb–6Sn [171], Ti–20Zr–12Nb–2Sn [172], etc. The selective
laser melted β-type Ti alloys always have heterogeneous microstructures, which has more or less
of an influence on their properties. A simple example is the micro-galvanic effect that results from
the different phases, which may degrade the corrosion resistance of produced Ti alloys. Therefore,
in recent years, more types of pre-alloyed β-type Ti alloy powder have been developed. More β-type Ti
alloys produced by selective laser melting were reported, including Ti–45Nb [173], Ti–35Zr–28Nb [174],
Ti–15Mo–5Zr–3Al [68], Ti–13Nb–13Zr [175], etc. However, preparing pre-alloyed powder significantly
increases the cost of SLM-produced β-type Ti alloys. Therefore, there is a long way to go for the
commercial use of SLM-produced β-type Ti alloys.

Similar to SLM, the EBM process, as another AM technique, is capable of fabricating a
series of engineering components directly from CAD models using an electron beam as the heat
source [152,176,177]. The EBM device generally contains a computer controlling system, a tungsten
filament for emitting an electron beam, and a powder feeder system [152]. The electron beam is
launched by a tungsten filament when the filament is heated to a certain temperature. During the
EBM process, a vacuum environment is used to protect the materials from oxidation. As such, EBM is
capable of producing Ti parts with complex geometry directly. The properties of porous β-type Ti
alloys are also influenced by the processing parameters of EBM. Liu et al. [42] prepared a porous β-type
Ti–24Nb–4Zr–8Sn with 70% porosity using EBM and found that a lower scanning speed results in more
input energy; thereby, the produced struts with higher yield strength and fewer flaws. Kurzynowski
et al. [178] discussed the effect of the EBM process parameters on the porosity and microstructure
of Ti–5Al–5Mo–5V–1Cr–1Fe alloy and pointed out that the maximum hardness is obtained at the
energy input of 30 J/mm3 and the scanning speed of 1800 mm/s. In addition, the Al content in
Ti–5Al–5Mo–5V–1Cr–1Fe alloy is related to the scanning speed adopted. The lower the scanning
speed (higher energy density), the higher the Al losses. Note that the produced parts of the EBM
process have higher environmental (chamber) temperatures compared to the SLM process. The highest
preheating temperature of SLM is only 300 ◦C, while that of EBM could be up to 600–1200 ◦C [2,42,152].
Hence, the cooling rate in SLM is significantly higher than that in EBM. Such distinctions in the
EBM and SLM processes can cause the fabricated parts of β-type Ti alloys produced by EBM and
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SLM to have different microstructures and therefore different mechanical properties. Taking β-type
Ti–24Nb–4Zr–8Sn (Ti2448) alloy as an example to make a comparison between SLM and EBM, it can be
found in Table 2 that the SLM-produced Ti2448 has a slightly higher compressive strength than its
EBM-produced counterpart. However, the compressive strength and Young’s moduli between SLM-
and EBM-produced Ti2448 are almost the same after annealing in the β phase region. These differences
are attributed to the production of an α (or α′) phase in Ti2448 during the AM fabrication. Nevertheless,
the α (or α′) phase could be dissolved after annealing over 750 ◦C [115].

Table 2. Phase constituents, compressive strength, and Young’s modulus of electron beam melting
(EBM)- and selective laser melting (SLM)-produced Ti–24Nb–4Zr–8Sn alloy (Ti2448) and human bones.

Material Method Phase
Constituents Strength (MPa) Young’s Modulus

(GPa) Ref.

Ti2448 (solid) SLM β - 53 ± 1.00 [2]
Ti2448 (75% porosity) SLM Near-β 50 ± 0.9 c 0.95 ± 0.05 [115]
Ti2448 (75% porosity) EBM Near-β 45 ± 1.1 c 1.34 ± 0.04 [115]

Ti2448 (75% porosity, annealing) SLM β 42 ± 0.5 c 1.04 ± 0.04 [115]
Ti2448 (75% porosity, annealing) EBM β 41 ± 1.1 c 1.09 ± 0.03 [115]

Tibia (cortical bone) - - 195 t 28.0 [179]
Femur (cortical bone) - - 194 t 17.6 [179]

Vertebra (cancellous bones) - - 0.9–2.5 t 0.02–0.07 [180]
Lumbar spine (cancellous bones) - - 1.6–2.5 t 0.02–0.07 [10]

t Ultimate tensile strength; c Ultimate compressive strength.

Besides the above most frequently used powder-bed methods, there are also other net-shape
fabrication methods to produce porous β-type Ti alloys. For example, laser-engineered net shaping
(LENS) involves a complete melting of metal/alloy powder using a high-power laser beam as the
heating source to fabricate the net shape (or near-net shape) functional parts [181]. In comparison to
SLM and EBM, LENS belongs to the powder-feed method. In the LENS process, a molten metal pool
on the substrate is created by a laser. Then, metal/alloy powder is injected into the pool, which melts
and solidifies. According to the CAD models used for fabrication, porous structures can be produced.
Porous CP–Ti and Ti–6Al–4V have been successfully fabricated by LENS, and their moduli can be
tailored by controlling the porosity [119,182,183]. It was reported that the moduli of produced materials
can be tailored between 2 and 90 GPa, which well match those of the natural bones [181]. However,
due to the lack of β-type Ti alloy, there is rare research with respect to the production of porous β-type
Ti alloy. So far, Kalita et al. [184] used the LENS technique to fabricate Ti–14Nb, Ti–17Nb, Ti–19Nb,
Ti–23Nb, and Ti–31Nb bulk samples by mixed Ti and Nb powder. Therefore, it is believed that porous
β-type Ti alloy may be fabricated by LENS in the near future.

Additionally, there are also some potential methods that can produce porous structures, such as
blown powder directed energy deposition [185] and wire fed directed energy deposition [186].
These two methods have successfully fabricated net-shaped Ti parts. Blown powder directed energy
deposition has a better capability of producing thin-walled components featuring sharp corners [187]
compared with wire fed directed energy deposition. By contrast, wire fed directed energy deposition has
a higher deposition rate and lower cost compared to blown powder directed energy deposition [187].
Boeing 787 structural components and external landing gear assembly with complex geometries
have been fabricated by wire fed directed energy deposition using Ti–6Al–4V [187]. There still
exist rare reports regarding the production of porous β-type Ti alloys by these methods. However,
due to the promising capabilities of blown powder directed energy deposition and wire fed directed
energy deposition, β-type Ti alloys with complex geometry can also be produced if there is a
corresponding feedstock.
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3.3. FAST-Forge

Apart from additive manufacturing, FAST-forge technology proposed by Weston et al. [188]
is another near-net shape fabrication method. This method uses shaped field-assisted sintering to
consolidate Ti powder into a pre-forged billet at the first step and then is closed die hot forged to achieve
a near-net shape part geometry. The forging step enhances the mechanical properties of the sintered Ti
by refining the microstructure. It was reported that Ti–5Al–5V–5Mo–3Cr (Ti–5553, a high-strength
β-type Ti alloy) has been successfully prepared by FAST-forge technology. The produced Ti–5553
exhibits a significantly lower grain size of 10 µm compared with its conventionally solution-treated
counterpart (approximately 700 µm) [189]. Therefore, The FAST-forge-produced Ti–5553 has a high
hardness between 410 and 417 HV. However, in the authors’ opinion, although FAST-forge technology
can fabricate Ti parts with the expected geometry, a porous structure with high porosity is still difficult
to achieve since the forging process is hardly conducted on the inner Ti part.

4. Mechanical Properties

A considerable number ofβ-type Ti alloys are currently applied as metallic biomaterials as implants,
such as artificial hip joints, heart valves, dentistry, and so on [2,190,191]. As such, orthopedic implants
would bear the cyclic loading during body movement, which leads to micro-stress concentration by
nicks or inhomogeneous microstructures [18]. For a long lifetime of implants, high fatigue resistance
and strength are required. In the past, Co–Cr-based alloys and α + β-type Ti alloys are the preferred
alloys compared to other biomedical alloys [18]. However, for now, β-type Ti alloys have become the
first choice due to their achievable strength and good fatigue resistance [2,18,192]. Kent et al. [193]
studied the mechanical properties of Ti–24Nb–3Zr–2Sn–xMo alloys. They found that the cold-rolled
Ti–24Nb–3Zr–2Sn–xMo alloys exhibit strength exceeding 900 MPa. Niinomi et al. [194] investigated the
Ti–29Nb–13Ta–4.6Zr alloy aging at 573 K and found that the fatigue strength of Ti–29Nb–13Ta–4.6Zr is
enhanced while maintaining the modulus below 80 GPa after aging. Therefore, Ti–29Nb–13Ta–4.6Zr
could exhibit high fatigue resistance after a suitable thermo-mechanical treatment [18,194,195]. Similarly,
Laheurte et al. [196] also had the same conclusion on Ti–29Nb–11Ta–5Zr and Ti–29Nb–6Ta–5Zr.

In addition, an ideal implant material is expected to possess low elastic modulus, good plasticity,
and wear resistance besides high fatigue resistance and strength [18,196]. Apparently, β-type Ti alloys
demonstrate closer moduli to the human bone in comparison to α-type Ti alloys and α + β-type Ti
alloys. Even if other soft tissues have lower elastic moduli than cortical bones, novel porous structure
β-type Ti alloys could satisfy these requirements (Table 2). To obtain the desired mechanical properties
of β-type Ti alloys, alloying elements are significantly important. Ehtemam-Haghighi et al. [76] found
that the addition of Fe would reduce the formation of α” martensite and hence improve the stability of
the β phase in Ti–11Nb–xFe alloys. With the increasing content of Fe, the strength of Ti–11Nb–xFe also
increases. Using such elements to design new β-type Ti alloys with controllable mechanical properties
is an available and economic process. Likewise, Jawed et al. [104] found that the addition of Zr and Mn
in Ti–Nb alloys would result in different microstructures (Figure 3). Apparently, the microstructures of
β-type Ti–Nb–Zr–Mn alloys changes with altering the Zr and Mn contents. The equiaxed β grains
are observed in all Ti–Nb–Zr–Mn alloys. It is noted that the addition of Mn reduces the average
grain size of Ti–Nb–Zr–Mn alloys. Mn is a high growth-restriction factor when applied to Ti and
Ti alloys. During solidification, the addition of Mn results in the rapid buildup of constitutional
undercooling, and therefore, nucleation can take place before an advancing solid–liquid interface.
Hence, the grains are refined [197]. In comparison, the average grain size of Ti–Nb–Zr–Mn alloys
increases with increasing the Zr content. The addition of Zr has both the solution strengthening
and fine-grain strengthening effect. Zr also acts as β-stabilizer. When the addition of Zr exceeds
a certain content, the stability of the β-phase enhances remarkably, which significantly lowers the
(α + β)/β phase transformation temperature. As such, the superheat increases markedly and the β
grains coarsen [198]. Therefore, the microstructures of Ti–Nb alloys can be tailored. Xu et al. [199]
developed a new β-type Ti–5Mo–Fe–3Sn that shows a low elastic modulus of 52 GPa and high yield
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strength of 740 MPa. The reason for these desired properties is attributed to the combined addition
of Sn and Fe suppressing the formation of theω phase and introducing solid solution strengthening.
Hence, selecting the appropriate elements to add to β-type Ti alloys is beneficial to controlling their
mechanical properties.
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On the other hand, heat treatment and thermo-mechanical processing also can manipulate the
microstructures of β-type Ti alloys and tailor their mechanical properties. Liang et al. [200] developed
a new β-type Ti alloy of Ti–31Nb–6Zr–5Mo by the d-electron method using a vacuum nonconsumable
furnace. Solution treatment with and without aging treatment were conducted after hot rolling of this
alloy. The Nb-rich fibrous grains produced by hot rolling are re-dissolved during solution treatment at
800 ◦C for 30 min. The alloying elements in Ti–31Nb–6Zr–5Mo become homogeneous after solution
treatment. After aging treatment at 300 ◦C for 2 h, the Nb element redistributes to form the Nb-rich
and Nb-depleted β regions. Both solution-treated and aging-treated samples show the identical
crystallographic structure of the monolithic β phase. However, different moduli of 44 GPa and 48 GPa
are observed for solution-treated and aging-treated samples, respectively. This finding indicates
that heat treatment can influence the distribution of alloying elements and therefore the mechanical
properties. Coakley et al. [201] found that the cold-rolled Ti–24Nb–4Zr–8Sn exhibits a martensitic
α′′-precipitate/β-matrix microstructure. After aging treatment at 300 ◦C for 4 h and 8 h, the number
density of Nb domains (which are associated with superelasticity) decreases, which deteriorates
their mechanical properties (Figure 4). Kuroda et al. [202] exerted homogenization, hot rolling,
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and annealing on a Ti–20Zr–xMo ternary alloy system (Mo = 0, 2.5, 5, 7.5 and 10 wt.%) and found
that the volume fraction of the β phase increases with the increasing Mo content. For homogenized
samples, their moduli ranges within 93–105 GPa, regardless of the Mo content. Similar results are also
found in the annealed samples [202]. However, for hot-rolled samples, the modulus of the sample
decreases with the increasing Mo content. The modulus of Ti–20Zr is 106 ± 4 GPa, which is significantly
higher than that of Ti–20Zr–10Mo (79 ± 4 GPa). This is because hot rolling induces the alteration of
the phase constituent of Ti–20Zr–xMo, and the Mo addition increases the stability of the β phase in
the microstructure.
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It can be found that the number density of Nb domains decreases with the increasing aging time.
(Reproduced with permission from ref. [201]. Copyright (2016), Elsevier).

Other microstructural characteristics can also influence the mechanical properties of β-type Ti
alloys. Gao et al. [172] pointed out that reducing the grain size of Ti–20Zr–12Nb–2Sn (at.%) would
obtain a higher recovery strain, which is an interesting phenomenon. Since the elastic modulus is known
to be dependent on the crystallographic orientation of the Ti alloys, controlling their texture can tailor
their moduli in theory. For Ti–15Mo–5Zr–3Al alloy, the highest value of the modulus is perpendicular
with (111) and the lowest value of the modulus is perpendicular with (001) [203]. Ishimoto et al. [68]
used different scan strategies in selective laser melting to control the texture of a Ti–15Mo–5Zr–3Al alloy
and successfully obtained a primary (001) texture along with the building direction by a bidirectional
scanning strategy with a rotation of 90◦ between layers (Figure 5). Therefore, a low modulus of
Ti–15Mo–5Zr–3Al alloy along with the building direction is achieved. This is because the different
scan strategies change the direction of the maximum thermal gradient. Similar work was conducted
by Pellizzari et al. [204] using such a method, and they obtained a metastable Ti–15Mo–3Al–3Nb alloy
with a low modulus of 53 GPa. Ti–13Nb–13Zr is an early developed metastable β-type Ti alloy with
low cost. However, it was reported that the Ti–13Nb–13Zr alloy has a modulus with a lowest boundary
of approximately 65 GPa [205]. Lee et al. [205] used cold caliber rolling to process Ti–13Nb–13Zr and
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obtained a <0002> orientation along with the normal direction. Therefore, a lower modulus of 47 GPa
is achieved.Metals 2020, 10, x FOR PEER REVIEW 13 of 29 
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Meanwhile, good wear resistance should be considered for β-type Ti alloys also. Yang et al. [67]
investigated the corrosion-wear properties of Ti–12Mo–6Zr–2Fe and Ti–6Al–4V in simulated body fluid
and found that Ti–12Mo–6Zr–2Fe and Ti–6Al–4V have comparable corrosion-wear resistance, although
Ti–12Mo–6Zr–2Fe has a lower hardness. Therefore, Ti–12Mo–6Zr–2Fe can be a candidate for biomedical
materials. Table 3 summarizes the mechanical properties of different β-type Ti alloys. Some of the
β-type Ti alloys have comparable hardness with α + β-type alloys. The situation is similar in yield
strength, while β-type Ti alloys could have higher yield strength than α-type alloys. The fracture strains
of Ti–11Nb–7Fe and Ti–35Nb are significantly higher than that of α-type Ti alloys. However, the elastic
moduli of β-type Ti alloys are significantly lower. Therefore, as the whole, the mechanical properties
of β-type Ti alloys are desired.
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Table 3. Mechanical properties including hardness (H), yield strength (σ0.2), ultimate strength (σmax), fracture strain (ξmax), and elastic modulus (E) for different types
of Ti alloys by a variety of fabrication methods.

Material Method Phase Constituents H (HV) σ0.2 (MPa) σmax (MPa) ξmax (%) E (GPa) Ref.

CP–Ti
SLM

α
261 ± 13 555 757 t 20 106 ± 3

[2]Sheet forming - 280 345 t 20 -
Fully annealed - 432 561 t 15 -

Ti–6Al–4V
SLM

α + β
409 1110 1267 t 7 109 [2]

Casting/superplastic
forming 346 847 976 t 5 110

Ti–24Nb–4Zr–8Sn
SLM β 220 ± 6 563 ± 38 665 ± 18 t 14 ± 4 53 ± 1 [2]

EBM (70% porosity) Near-β 280 ± 5 - 35 ± 2 c - 0.7 ± 0.1 [42]

Ti–11Nb–7Fe
cold crucible

levitation
melting

β 364 985 ± 8 2006 ± 14 c 42 ± 2 86 ± 1 [75]

Ti–33Zr–5Fe–4Cr
cold crucible

levitation
melting

β - 1210 ± 10 1711 ± 34 c - - [206]

Ti–27Nb–7Fe–8Cr
cold crucible

levitation
melting

β 345 940 ± 23 2000 c - 72 ± 5 [108]

Ti–25Nb–5Sn–4Cr
cold crucible

levitation
melting

β 208 411 ± 13 5090 c - - [105]

Ti–25Nb–3Zr–3Mo–2Sn
SLM

β
202 592 ± 21 716 ± 14 t - - [61]

Hot-rolled 223~230 308 ± 13 622 ± 21 t - -

Ti–26Nb–5Mn–10Zr
cold crucible

levitation
melting

β 228 ± 4 488 ± 19 1900c - - [104]

Ti–33Zr–7Fe–2Cr
cold crucible

levitation
melting

β 416 1285 ± 42 1566 ± 49 t - - [207]

Ti–12Mo–6Zr–2Fe - β 300 ± 8 911 ± 23 927 ± 8 t - 82 ± 6 [67]
Ti–35Nb SLM β - 660 ± 13 - 47 ± 1 85 ± 1 [57]

t Ultimate tensile strength; c Ultimate compressive strength.
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5. Corrosion Behavior

It is well known that Ti and its alloys demonstrate good corrosion resistance in the various
environments due to the formation of a stable passive film (mainly consisting of TiO2) [2,158,208–210].
Even if the passive film on Ti samples is broken, the passive film can be re-built in a very short
time. In the early stage, α-type and α + β-type Ti alloys are commonly applied for biomedical
applications. Generally, the corrosion behavior of metallic materials depends on several factors:
applied environment, alloy compositions, and microstructure [127,211–214]. The human body has a
relatively stable environment, while human temperature, environmental chemistry, and pH would
change in some cases (e.g., inflammation and allergy). Alves et al. [215] investigated the corrosion
resistance of CP–Ti and Ti–6Al–4V in simulated body fluid at 25 ◦C and 37 ◦C, respectively and found
that the corrosion resistance of CP–Ti and Ti–6Al–4V is better at 25 ◦C. Therefore, the temperature
has a significant influence on the corrosion behavior of CP–Ti and Ti–6Al–4V. Similarly, the pH value
also influences the corrosion behavior of Ti–6Al–4V [216]. In the neutral Ringer’s solution, Ti–6Al–4V
has good corrosion resistance, while its passive range is reduced at pH = 8 [216]. According to the
literature [217], Ti–6Al–4V exhibits duct-shaped pits along the grain boundaries in the simulated body
fluid, which is considered to be related to the dissolution of V-rich zones. As such, the pitting corrosion
of Ti–6Al–4V often takes place in the oral environment, which is attributed to the greater availability of
oxygen and acidic foods [3]. Kumar et al. [80] found that Ti–15Mo, CP–Ti, and Ti–6Al–4V alloys all
have good corrosion resistance in Ringer’s solution, while only Ti–15Mo shows a stable passive film in
the fluoride solution. The high fluoride solution is inevitable in the human body environment, such as
dental cleaning [209,217]. Therefore, α-type and α + β-type Ti alloys show inferior corrosion resistance
compared with β-type Ti alloys in such environments. Furthermore, for bearing metallic orthopedic
implants, fretting corrosion should be considered [217]. Fretting corrosion is usually presented at
modular junctions and decreases via the formation of a protective oxide layer [217]. Hence, it is highly
essential to select appropriate Ti alloys with high corrosion resistance for biomedical applications.

Thanks to the development ofβ-type Ti alloys, they become candidates for biomedical applications.
It is reported that β-type Ti alloys have good performance in a variety of corrosive environments.
Wang et al. [57] found that an SLM-produced Ti–35Nb alloy could quickly form a stable passive
film (mainly consisting of TiO2 and Nb2O5) to protect itself. The stable passive film covers the
entire metal surface and effectively reduces the corrosion rate. However, the quality of the passive
film is significantly influenced by the chemical homogeneity of the underlying substrate. Generally,
SLM-produced Ti–35Nb using mixed powder always results in a heterogeneous microstructure with
individual Nb grains. Wang et al. [57] found that the heat treatment of SLM-produced Ti–35Nb at 1000 ◦C
for 24 h in an Ar atmosphere significantly promotes the chemical homogeneity of the Ti–35Nb substrate.
Therefore, the heat-treated Ti–35Nb has a higher corrosion potential of −0.46 V versus saturated
calomel electrode (SCE) than the SLM-produced Ti–35Nb (−0.55 V versus SCE). Alves et al. [211] also
demonstrated that the corrosion resistance of β-type Ti alloys depends on the stability of passive films.
They found that Ti–10Mo alloy shows significantly low passive current densities, especially after heat
treatment. Certainly, there are many comparative investigations with respect to the corrosion behavior
of three types of Ti alloys, which aim to develop more appropriate Ti alloys for biomedical applications.
Bai et al. [43] compared the corrosion behavior among CP–Ti, Ti–6Al–4V, and Ti–24Nb–4Zr–8Sn in
the simulated physiological environment. Their results showed that the Ti–24Nb–4Zr–8Sn alloy has a
wider passive region as compared to CP–Ti and Ti–6Al–4V. Moreover, the Ti–24Nb–4Zr–8Sn alloy has a
relatively low corrosion current density, which is comparable to CP–Ti and Ti–6Al–4V, attributing to the
formation of the stable passive film primarily consisting of titanium and niobium oxides on its surface.
Kumar et al. [80] also studied the corrosion behavior of CP–Ti, Ti–6Al–4V, and Ti–15Mo in the Ringer’s
solution, and they found that the passivation range of Ti–15Mo alloy (166–2513 mV versus SCE) is
greater than those of CP–Ti (145–1522 mV versus SCE) and Ti–6Al–4V (155–1460 mV versus SCE).
Chui et al. [218] investigated the corrosion behavior of the as-cast Ti–Zr–Nb–Mo alloys with different
Mo contents. The results showed that the grain size of the Ti–Zr–Nb–Mo alloy decreases with increasing
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Mo content due to the presence of Mo causing constitutional undercooling, and the Ti–Zr–Nb–Mo alloy
with a 15 wt.% addition of Mo shows the lowest passivation current density of 2.31 ± 0.03 µA cm−2.
Zareidoost et al. [219] separately added Fe, Sn, and Ag to Ti–25Zr–10Nb–10Ta and found that the
alloy with Ag addition shows the best corrosion resistance in the Ringer’s solution. The standard
electrode potential of Ag (0.799 V) is more positive than that of Ti (−0.98 V), leading to the increase
in the stability of passive film formed on Ti–25Zr–10Nb–10Ta. Therefore, Ti–25Zr–10Nb–10Ta–1.5Ag
shows better corrosion resistance in Ringer’s solution. Lin et al. [220] controlled the microstructure of
Ti–40Ta–22Hf–11.7Zr by different solution treatment and aging treatment schemes. The results showed
that the as-cast Ti–40Ta–22Hf–11.7Zr shows a β +ωmicrostructure, which transforms to monolithic
β phase after being solution-treated at 900 ◦C for 1 h. After aging at 300 ◦C for 15 min, 1.5 h, 12 h,
and 24 h, the β-phase gradually transforms into β + α′′, β + α′′ + α, and β + α +ω. Such different
microstructures of Ti–40Ta–22Hf–11.7Zr alloys cause their distinct electrochemical behavior in Hank’s
solution. The solution-treated sample with a single βmicrostructure shows the lowest current density
of 0.49 ± 0.03 µA cm−2.

In several previous studies, the SLM-produced Ti–6Al–4V alloys would be prone to pitting
corrosion in 3.5 wt.% NaCl solution compared with the counterparts produced by traditional methods,
while EBM-produced Ti–6Al–4V alloy has better corrosion resistance than the wrought counterpart in
phosphate-buffered saline [158,221]. Therefore, an open question is asked: Is there a distinct corrosion
behavior of Ti alloys produced by different preparation methods? To answer this question, Qin et al. [157]
compared the corrosion behavior of SLM-produced and traditional monolithic Ti–24Nb–4Zr–8Sn
alloys. These two alloys have the same chemical composition and monolithic β phase but different
microstructures. As seen from Figure 6 [157], the potentiodynamic polarization curves and Nyquist
plots of both alloys are nearly overlapping. Therefore, it can be understood that the distinctions
in the corrosion behavior of Ti–6Al–4V alloys produced by different methods are related to the
formation of different phase constituents in the microstructure. In comparison, monolithic β-phase
Ti–24Nb–4Zr–8Sn alloys produced by various methods show similar corrosion behavior. Meanwhile,
due to their monolithic phase in the microstructure, many β-type Ti alloys also possess high pitting
corrosion resistance. However, for some metastable β-type Ti alloys, thermo-mechanical processing
and heat treatment may trigger the phase transformation of β→α, β→α′, and/or β→α′′. Therefore,
different phases in the microstructure of Ti alloys would produce the micro-galvanic effect during
corrosion [222]. Table 4 lists the corrosion potentials, corrosion current densities, and high-potential
passive current densities of Ti–6Al–4V ELI, Ti–35Nb–7Zr–5Ta, Ti–13Mo–7Zr–3Fe (as-received α + β),
and Ti–13Mo–7Zr–3Fe (metastable β) alloys in Ringer’s solution at 37 ◦C after 1-h immersion [222].
Both Ti–13Mo–7Zr–3Fe (as-received α + β) and Ti–13Mo–7Zr–3Fe (metastable β) alloys show better
corrosion resistance than Ti–6Al–4V, and monolithic-phase Ti–13Mo–7Zr–3Fe (metastable β) exhibits
better corrosion resistance than Ti–13Mo–7Zr–3Fe (as-received α + β). Therefore, it can be understood
that the corrosion behavior of Ti alloys is mainly influenced by their phase constituents.
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Figure 6. Electrochemical measurements of selective laser melted and wrought Ti–24Nb–4Zr–8Sn:
(a) Potentiodynamic polarization curves and (b) Nyquist plots (the inset is the equivalent circuit
diagram). Ti2448 indicated Ti–24Nb–4Zr–8Sn. (Reproduced with permission from [157]. Copyright
(2019), ACS Publications).

Table 4. Corrosion potentials, corrosion current densities, and high-potential passive current densities
of the Ti–6Al–4V ELI, Ti–35Nb–7Zr–5Ta, Ti–13Mo–7Zr–3Fe (as-received α + β), and Ti–13Mo–7Zr–3Fe
(metastable β) alloys in Ringer’s solution at 37 ◦C after 1-h immersion [222].

Material Corrosion Potential
(mV vs. SCE)

Corrosion Current
Density (µA cm−2)

Passivation Current
Density (µA cm−2)

Ti–13Mo–7Zr–3Fe (α + β) −421 ± 12 29 ± 15 2.2 ± 0.1
Ti–13Mo–7Zr–3Fe (β) −343 ± 83 20 ± 10 2.1 ± 0.1

Ti–35Nb–7Zr–5Ta −292 ± 6 12 ± 5 1.9 ± 0.4
Ti–6Al–4V ELI −380 ± 65 31 ± 13 2.9 ± 0.4

Generally, Cl− is presented in a variety of environments, such as the human body, marine,
coast environment, and chemical environment [223–225]. Cl− ions are aggressive ions in the corrosive
environments, which can damage the passive film formed on many metallic components [226–228].
Therefore, the investigation on the corrosion behavior of Ti alloys in the Cl- environment can estimate
their corrosion rates. Schutz [229] summarized the corrosion rate of various Ti alloys in boiling HCI
solution at different concentrations and pointed out that most β-type Ti alloys show better corrosion
resistance than Ti–6Al–4V. This finding illustrates that the passive films formed on β-type Ti alloys are
more stable than that formed on Ti–6Al–4V. The better corrosion resistance enables β-type Ti alloys to
be good potential biomedical materials.

6. Biocompatibility

Apart from the mechanical and corrosion properties, excellent biocompatibility is required for
implant materials. Ideal materials can be implanted in the human body for a long period without a
second surgery. After implantation, the materials would induce a considerable number of reactions
in the human body with body fluid, proteins, and cells. Conventional α + β-type Ti alloys always
contain detrimental elements. Therefore, β-type Ti alloys have been developed in recent years,
and the corresponding investigation on the biocompatibility of β-type Ti alloys was also conducted.
McMahon et al. [230] compared the cytocompatibility between Ti–26Nb and Ni–49.2Ti, and they found
that Ti–26Nb is less cytotoxic. Xue et al. [231] pointed out that the Ti–19Zr–10Nb–1Fe alloy has similar
cytocompatibility with the Ni–Ti alloy but better hemocompatibility. The improved biocompatibility of
β-type Ti alloys can be attributed to the absence of toxic alloying elements. Up to date, the investigation
on the biocompatibility of β-type Ti alloys is still at a very early stage. Further investigation regarding
β-type Ti alloys is imminently required.

On the other hand, due to the biological inertia of Ti alloys, fibrous tissue capsules are prone to form
on the implant surface [2]. Such a phenomenon is inevitable for all types of Ti alloys. The biological
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inertness leads the β-type Ti alloys to be safe but not bioactive. Therefore, although β-type Ti alloys
are free of toxic alloying elements, further improving the capability of osseointegration should be
considered. Generally, surface modification with the aim to improve the bioactivity of Ti alloys has
received a considerable amount of attention. For such a purpose, Takematsu et al. [232] conducted alkali
solution treatments on Ti–29Nb–13Ta–4.6Zr by electrochemical, hydrothermal, or mixed processes for
different times, and the results showed that regardless of the methods or parameters used, the surface
of Ti–29Nb–13Ta–4.6Zr becomes mesh-like and has a strong ability to induce the formation of apatite.
Dikici et al. [233] synthesized calcium phosphate/TiO2 composite coatings on Ti-29Nb-13Ta-4.6Zr by
the sol–gel method; they found that the coating can significantly enhance its bioactivity, since both
calcium phosphate and TiO2 are highly bioactive to bone cells. Besides inorganic coatings, organic
coatings (or layers) have also received extensive attention. In the last few decades, the immobilization
of extracellular matrix (ECM) proteins on the surface of Ti implants has been developed, which has
been conducted on CP–Ti and Ti–6Al–4V [234]. For instance, CP–Ti coated with collagen has a higher
bioactivity for human mesenchymal cells [234]. Similar results are also found in other coatings [235].
Unfortunately, there is still rare literature about the organic coatings on β-type Ti alloys. However,
due to the large success of organic coatings on other types of Ti alloys, β-type Ti alloys with bioactive
coatings are expected to be a future trend for biomedical Ti alloys.

7. Conclusions

Good mechanical properties, excellent corrosion resistance, and admirable biocompatibility are
the basic requirements for biomedical materials. Therefore, β-type Ti alloys are the preferred choice.
As such, β-type Ti alloys have received a considerable amount of attention in the past few decades.
For better development and application in the future, many studies have been conducted to investigate
the β-type Ti alloys from alloy design and manufacture to properties. Therefore, this review introduces
the biomedicalβ-type Ti alloys in terms of development, design, new preparation methods, and various
properties. Biomedical β-type Ti alloys are developed later than α-type and α + β-type Ti alloys
in the requirements of low elastic modulus and non-toxic alloying elements. Designing a β-type Ti
alloy requires the addition of a certain fraction of β-stabilizers. The molybdenum equivalency (Moeq)
method is frequently used to predict the β-phase stability of β-type Ti alloy, which is also considered
as a significant convenience for designing new β-type Ti alloys. Although β-type Ti alloys have lower
elastic moduli than other types of Ti alloys, the elastic moduli of β-type Ti alloys are still higher than
those of human bones. Therefore, porous β-type Ti alloys with lower elastic modulus as well as higher
tissue adhesion are developed. Additive manufacture (such as selective laser melting and electron
beam melting) and powder metallurgy (such as spark plasma sintering and the spacer hold method) are
commonly used to produce porous β-type Ti alloys. Afterwards, the properties of β-type Ti alloys are
reviewed in view of their mechanical properties, corrosion behavior, and biocompatibility. Fortunately,
β-type Ti alloys could perform well in these three aspects. Although β-type Ti alloys have been used
as biomedical materials, further investigations are still recommended to increase their reliability and
bioactivity in the human body in long-term service. Therefore, in the authors’ opinion, porous β-Ti
alloys with bioactive coatings may be the future trend for biomedical implants.
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