5,939 research outputs found

    The association of HBV core promoter double mutations (A1762T and G1764A) with viral load differs between HBeAg positive and anti-HBe positive individuals: A longitudinal analysis

    Get PDF
    Background/Aims: Although there have been a few reports regarding the effect of basal core promoter (BCP) double mutations (A1762T and G1764A) on hepatitis B viral loads, the association remains uncertain. We aim to determine the association after controlling for HBeAg - a strong confounding factor.Methods: We selected randomly 190 individuals from a Chinese cohort of 2258 subjects for cross-sectional analysis and 56 of the 190 for longitudinal analysis of viral loads.Results: In multivariable analysis of the cross-sectional data, BCP double mutations are significantly associated with lower viral loads in HBeAg positive subjects but no difference was found in anti-HBe positive subjects. Triple mutations at nucleotide (nt) 1753, 1762 and 1764 and mutations between nt 1809 and 1817, precore stop mutation (nt 1896) and genotype are not associated with viral loads in either HBeAg or anti-HBe positive subjects. Analysis of the longitudinal data yielded similar results to the cross-sectional data. Viral loads differ significantly between individuals infected with wild-type and BCP double mutations prior to HBeAg seroconversion but this difference is lost after seroconversion.Conclusions: BCP double mutations are associated with lower viral loads in HBeAg positive individuals but have no effect on the viral loads of anti-HBe positive individuals. (C) 2008 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved

    Carbonated Drinks Impact Follicle Development, Expression of Ovarian FSHR and Serum Caspase-3 in Mice

    Get PDF
    Objectives: The present study aimed to assess the effects of Coca-Cola and Pepsi-Cola on the development of ovaries and follicles, and on the reproduction of animals

    Ruptured pseudocyst of pancreas presenting with paraplegia: a case report

    Get PDF
    This is an Open Access article distributed under the terms of the Creative Commons Attribution Licens

    Self Injection length in La0.7 Ca0.3 Mno3-YBa 2Cu3O7-d ferromagnet- superconductor multi layer thin films

    Get PDF
    We have carried out extensive studies on the self-injection problem in barrierless heterojunctions between La0.7Ca0.3MnO3 (LCMO) and YBa2Cu3O7-d (YBCO). The heterojunctions were grown in situ by sequentially growing LCMO and YBCO films on LaAlO3 (LAO) substrate using a pulsed laser deposition (PLD) system. YBCO micro-bridges with 64 microns width were patterned both on the LAO (control) and LCMO side of the substrate. Critical current, Ic, was measured at 77K on both the control side as well as the LCMO side for different YBCO film thickness. It was observed that while the control side showed a Jc of ~2 x 10E6 A/ cm2 the LCMO side showed about half the value for the same thickness (1800 A). The difference in Jc indicates that a certain thickness of YBCO has become 'effectively' normal due to self-injection. From the measurement of Jc at two different thickness' (1800 A and 1500 A) of YBCO both on the LAO as well as the LCMO side, the value of self-injection length (at 77K) was estimated to be ~900 A self-injection length has been quantified. A control experiment carried out with LaNiO3 deposited by PLD on YBCO did not show any evidence of self-injection.Comment: 6 pages, one figure in .ps forma

    Numerical investigation of wave forces on two side-by-side non-identical boxes in close proximity under wave actions

    Get PDF
    Wave forces on two side-by-side non-identical boxes in close proximity under wave actions are investigated by employing a numerical wave flume based on the OpenFOAM® package. The similarity and discrepancy of hydrodynamic behavior between the wave response in the narrow gap and the wave forces on the boxes are the focus of the present study. Around resonant frequencies, the large-amplitude piston-type free surface oscillation in the narrow gap can lead to the peak values in the horizontal and vertical wave forces on the downstream box, and the horizontal wave forces on the upstream box. However, only a rapid decrease with the incident wave frequencies can be observed for the vertical wave forces on the upstream box. The resonant frequencies of the wave forces on two boxes are also different with those of wave response in the narrow gap. With the increase of incident wave amplitude, the resonant frequencies and normalized amplitudes of wave forces on downstream box tend to be smaller, which is similar with that of wave response in the narrow gap. However, the normalized wave forces on the upstream box around resonant frequencies do not always decrease with the increase of incident wave amplitude. On the whole, the hydrodynamic behavior of wave forces has some similar characteristics with that of wave response in the narrow gap. However, evident discrepancy between them can also be observed because the other factors, such as the wave response upstream and downstream the two-box systems, also has the non-negligible contribution to wave forces

    The Quantized Hall Insulator: A New Insulator in Two-Dimensions

    Full text link
    Quite generally, an insulator is theoretically defined by a vanishing conductivity tensor at the absolute zero of temperature. In classical insulators, such as band insulators, vanishing conductivities lead to diverging resistivities. In other insulators, in particular when a high magnetic field (B) is added, it is possible that while the magneto-resistance diverges, the Hall resistance remains finite, which is known as a Hall insulator. In this letter we demonstrate experimentally the existence of another, more exotic, insulator. This insulator, which terminates the quantum Hall effect series in a two-dimensional electron system, is characterized by a Hall resistance which is approximately quantized in the quantum unit of resistance h/e^2. This insulator is termed a quantized Hall insulator. In addition we show that for the same sample, the insulating state preceding the QHE series, at low-B, is of the HI kind.Comment: 4 page

    Fabrication of Large Area Periodic Nanostructures Using Nanosphere Photolithography

    Get PDF
    Large area periodic nanostructures exhibit unique optical and electronic properties and have found many applications, such as photonic band-gap materials, high dense data storage, and photonic devices. We have developed a maskless photolithography method—Nanosphere Photolithography (NSP)—to produce a large area of uniform nanopatterns in the photoresist utilizing the silica micro-spheres to focus UV light. Here, we will extend the idea to fabricate metallic nanostructures using the NSP method. We produced large areas of periodic uniform nanohole array perforated in different metallic films, such as gold and aluminum. The diameters of these nanoholes are much smaller than the wavelength of UV light used and they are very uniformly distributed. The method introduced here inherently has both the advantages of photolithography and self-assembled methods. Besides, it also generates very uniform repetitive nanopatterns because the focused beam waist is almost unchanged with different sphere sizes

    Amplitude stabilization and active control of a terahertz quantum cascade laser with a graphene loaded split-ring-resonator array

    Get PDF
    We demonstrate the amplitude stabilization of a 2.85 THz quantum cascade laser with a graphene loaded split-ring-resonator array acting as an external amplitude modulator. The transmittance of the modulator can be actively changed by modifying the graphene conductivity via electrostatic back-gating. The modulator operates at room temperature and is capable of actively modulating the quantum cascade laser power level and thus stabilizing the power output via a proportional-integral-derivative feedback control loop. The stability was enhanced by more than 10 times through actively tuning the modulation. Furthermore, this approach can be used to externally control the laser power with a high level of stability.This work is supported by funding from the Engineering and Physical Sciences Research Council (Grant No. EP/P021859/1, HyperTerahertz–High precision terahertz spectroscopy and microscopy)
    • …
    corecore