56 research outputs found

    Fourth-neighbour two-point functions of the XXZ chain and the Fermionic basis approach

    Get PDF
    We give a descriptive review of the Fermionic basis approach to the theory of correlation functions of the XXZ quantum spin chain. The emphasis is on explicit formulae for short-range correlation functions which will be presented in a way that allows for their direct implementation on a computer. Within the Fermionic basis approach a huge class of stationary reduced density matrices, compatible with the integrable structure of the model, assumes a factorized form. This means that all expectation values of local operators and all two-point functions, in particular, can be represented as multivariate polynomials in only two functions ρ\rho and ω\omega and their derivatives with coefficients that are rational in the deformation parameter qq of the model. These coefficients are of `algebraic origin'. They do not depend on the choice of the density matrix, which only impacts the form of ρ\rho and ω\omega. As an example we work out in detail the case of the grand canonical ensemble at temperature TT and magnetic field hh for qq in the critical regime. We compare our exact results for the fourth-neighbour two-point functions with asymptotic formulae for h,T=0h, T = 0 and for finite hh and TT

    A variational approach to the optimized phonon technique for electron-phonon problems

    Full text link
    An optimized phonon approach for the numerical diagonalization of interacting electron-phonon systems is proposed. The variational method is based on an expansion in coherent states that leads to a dramatic truncation in the phonon space. The reliability of the approach is demonstrated for the extended Holstein model showing that different types of lattice distortions are present at intermediate electron-phonon couplings as observed in strongly correlated systems. The connection with the density matrix renormalization group is discussed.Comment: 4 figures; submitted to Phys. Rev.

    Microscopic modelling of doped manganites

    Full text link
    Colossal magneto-resistance manganites are characterised by a complex interplay of charge, spin, orbital and lattice degrees of freedom. Formulating microscopic models for these compounds aims at meeting to conflicting objectives: sufficient simplification without excessive restrictions on the phase space. We give a detailed introduction to the electronic structure of manganites and derive a microscopic model for their low energy physics. Focussing on short range electron-lattice and spin-orbital correlations we supplement the modelling with numerical simulations.Comment: 20 pages, 10 figs, accepted for publ. in New J. Phys., Focus issue on Orbital Physic

    Short-distance thermal correlations in the XXZ chain

    Full text link
    Recent studies have revealed much of the mathematical structure of the static correlation functions of the XXZ chain. Here we use the results of those studies in order to work out explicit examples of short-distance correlation functions in the infinite chain. We compute two-point functions ranging over 2, 3 and 4 lattice sites as functions of the temperature and the magnetic field for various anisotropies in the massless regime 1<Δ<1- 1 < \Delta < 1. It turns out that the new formulae are numerically efficient and allow us to obtain the correlations functions over the full parameter range with arbitrary precision.Comment: 25 pages, 5 colored figure

    Quantum lattice fluctuations in a frustrated Heisenberg spin-Peierls chain

    Full text link
    As a simple model for spin-Peierls systems we study a frustrated Heisenberg chain coupled to optical phonons. In view of the anorganic spin-Peierls compound CuGeO3 we consider two different mechanisms of spin-phonon coupling. Combining variational concepts in the adiabatic regime and perturbation theory in the anti-adiabatic regime we derive effective spin Hamiltonians which cover the dynamical effect of phonons in an approximate way. Ground-state phase diagrams of these models are determined, and the effect of frustration is discussed. Comparing the properties of the ground state and of low-lying excitations with exact diagonalization data for the full quantum spin phonon models, good agreement is found especially in the anti-adiabatic regime.Comment: 9 pages, 7 figures included, submitted to Phys. Rev.

    Quantum Monte Carlo and variational approaches to the Holstein model

    Full text link
    Based on the canonical Lang-Firsov transformation of the Hamiltonian we develop a very efficient quantum Monte Carlo algorithm for the Holstein model with one electron. Separation of the fermionic degrees of freedom by a reweighting of the probability distribution leads to a dramatic reduction in computational effort. A principal component representation of the phonon degrees of freedom allows to sample completely uncorrelated phonon configurations. The combination of these elements enables us to perform efficient simulations for a wide range of temperature, phonon frequency and electron-phonon coupling on clusters large enough to avoid finite-size effects. The algorithm is tested in one dimension and the data are compared with exact-diagonalization results and with existing work. Moreover, the ideas presented here can also be applied to the many-electron case. In the one-electron case considered here, the physics of the Holstein model can be described by a simple variational approach.Comment: 18 pages, 11 Figures, v2: one typo correcte

    Laser-accelerated electron beams at 1 GeV using optically-induced shock injection

    Get PDF
    In recent years, significant progress has been made in laser wakefield acceleration (LWFA), both regarding the increase in electron energy, charge and stability as well as the reduction of bandwidth of electron bunches. Simultaneous optimization of these parameters is, however, still the subject of an ongoing effort in the community to reach sufficient beam quality for next generation's compact accelerators. In this report, we show the design of slit-shaped gas nozzles providing centimeter-long supersonic gas jets that can be used as targets for the acceleration of electrons to the GeV regime. In LWFA experiments at the Centre for Advanced Laser Applications, we show that electron bunches are accelerated to 1GeV using these nozzles. The electron bunches were injected into the laser wakefield via a laser-machined density down-ramp using hydrodynamic optical-field-ionization and subsequent plasma expansion on a ns-timescale. This injection method provides highly controllable quasi-monoenergetic electron beams with high charge around 100pC, low divergence of 0.5mrad, and a relatively small energy spread of around 10% at 1GeV. In contrast to capillaries and gas cells, the scheme allows full plasma access for injection, probing or guiding in order to further improve the energy and quality of LWFA beams

    Effect of screening of the electron-phonon interaction on the temperature of Bose-Einstein condensation of intersite bipolarons

    Full text link
    Here we consider an interacting electron-phonon system within the framework of extended Holstein-Hubbard model at strong enough electron-phonon interaction limit in which (bi)polarons are the essential quasiparticles of the system. It is assumed that the electron-phonon interaction is screened and its potential has Yukawa-type analytical form. An effect of screening of the electron-phonon interaction on the temperature of Bose-Einstein condensation of the intersite bipolarons is studied for the first time. It is revealed that the temperature of Bose-Einstein condensation of intersite bipolarons is higher in the system with the more screened electron-phonon interaction.Comment: 6 pages, 4 figure

    Manganites at Quarter Filling: Role of Jahn-Teller Interactions

    Full text link
    We have analyzed different correlation functions in a realistic spin-orbital model for half-doped manganites. Using a finite-temperature diagonalization technique the CE phase was found in the charge-ordered phase in the case of small antiferromagnetic interactions between t2gt_{2g} electrons. It is shown that a key ingredient responsible for stabilization of the CE-type spin and orbital-ordered state is the cooperative Jahn-Teller (JT) interaction between next-nearest Mn+3^{+3} neighbors mediated by the breathing mode distortion of Mn+4^{+4} octahedra and displacements of Mn+4^{+4} ions. The topological phase factor in the Mn-Mn hopping leading to gap formation in one-dimensional models for the CE phase as well as the nearest neighbor JT coupling are not able to produce the zigzag chains typical for the CE phase in our model.Comment: 16 pages with 16 figures, contains a more detailed parameter estimate based on the structural data by Radaelli et al. (accepted for publication in Phys. Rev. B
    corecore