16 research outputs found

    Coherent Control for a Two-level System Coupled to Phonons

    Full text link
    The interband polarizations induced by two phase-locked pulses in a semiconductor show strong interference effects depending on the time tau_1 separating the pulses. The four-wave mixing signal diffracted from a third pulse delayed by tau is coherently controlled by tuning tau_1. The four-wave mixing response is evaluated exactly for a two-level system coupled to a single LO phonon. In the weak coupling regime it shows oscillations with the phonon frequency which turn into sharp peaks at multiples of the phonon period for a larger coupling strength. Destructive interferences between the two phase-locked pulses produce a splitting of the phonon peaks into a doublet. For fixed tau but varying tau_1 the signal shows rapid oscillations at the interband-transition frequency, whose amplitude exhibits bursts at multiples of the phonon period.Comment: 4 pages, 4 figures, RevTex, content change

    Fermi-edge singularities in linear and non-linear ultrafast spectroscopy

    Get PDF
    We discuss Fermi-edge singularity effects on the linear and nonlinear transient response of an electron gas in a doped semiconductor. We use a bosonization scheme to describe the low energy excitations, which allows to compute the time and temperature dependence of the response functions. Coherent control of the energy absorption at resonance is analyzed in the linear regime. It is shown that a phase-shift appears in the coherent control oscillations, which is not present in the excitonic case. The nonlinear response is calculated analytically and used to predict that four wave-mixing experiments would present a Fermi-edge singularity when the exciting energy is varied. A new dephasing mechanism is predicted in doped samples that depends linearly on temperature and is produced by the low-energy bosonic excitations in the conduction band.Comment: long version; 9 pages, 4 figure
    corecore