18 research outputs found

    Establishing a sorting protocol for healthcare databases

    Get PDF
    Background: Health information records in many countries, especially developing countries, are still paper based. Compared to electronic systems, paper-based systems are disadvantageous in terms of data storage and data extraction. Given the importance of health records for epidemiological studies, guidelines for effective data cleaning and sorting are essential. They are, however, largely absent from the literature. The following paper discusses the process by which an algorithm was developed for the cleaning and sorting of a database generated from emergency department records in Lebanon.Design and methods: Demographic and health related information were extracted from the emergency department records of three hospitals in Beirut. Appropriate categories were selected for data categorization. For health information, disease categories and codes were selected according to the International Classification of Disease 10th Edition.Results: A total of 16,537 entries were collected. Demographic information was categorized into groups for future epidemiological studies. Analysis of the health information led to the creation of a sorting algorithm which was then used to categorize and code the health data. Several counts were then performed to represent and visualize the data numerically and graphically.Conclusions: The article describes the current state of health information records in Lebanon and the associated disadvantages of a paper-based system in terms of storage and data extraction. Furthermore, the article describes the algorithm by which health information was sorted and categorized to allow for future data analysis using paper records

    Cluster counts: Calibration issue or new physics?

    No full text
    International audienceIn recent years, the amplitude of matter fluctuations inferred from low-redshift probes has been found to be generally lower than the value derived from cosmic microwave background (CMB) observations in the ΛCDM model. This tension has been exemplified by Sunyaev-Zel’dovich and X-ray cluster counts which, when using their Planck standard cluster mass calibration, yield a value of σ8, appreciably lower than estimations based on the latest Planck CMB measurements. In this work we examine whether non-minimal neutrino masses can alleviate this tension substantially. We used the cluster X-ray temperature distribution function derived from a flux-limited sample of local X-ray clusters, combined with Planck CMB measurements. These datasets were compared to ΛCDM predictions based on recent mass function, adapted to account for the effects of massive neutrinos. Treating the clusters mass calibration as a free parameter, we examined whether the data favours neutrino masses appreciably higher than the minimal 0.06 eV value. Using Markov chain Monte Carlo methods, we found no significant correlation between the mass calibration of clusters and the sum of neutrino masses, meaning that massive neutrinos do not noticeably alleviate the above-mentioned Planck CMB–clusters tension. The addition of other datasets (baryon acoustic oscillations and Ly-α) reinforces those conclusions. As an alternative possible solution to the tension, we introduced a simple, phenomenological modification of gravity by letting the growth index Îł vary as an additional free parameter. We find that the cluster mass calibration is robustly correlated with the Îł parameter, insensitively to the presence of massive neutrinos or/and additional data used. We conclude that the standard Planck mass calibration of clusters, if consolidated, would represent evidence for new physics beyond ΛCDM with massive neutrinos.Key words: galaxies: clusters: general / large-scale structure of Universe / cosmological parameters / cosmic background radiatio

    Seasonal Variation of Aerosol Size Distribution Data at the Puy de DĂŽme Station with Emphasis on the Boundary Layer/Free Troposphere Segregation

    No full text
    International audienceAerosol particles are important due to their direct and indirect impacts on climate. Within the planetary boundary layer (BL), these particles have a relatively short lifetime due to their frequent removal process by wet deposition. When aerosols are transported into the free troposphere (FT), their atmospheric lifetime increases significantly, making them representative of large spatial areas. In this work, we use a combination of in situ measurements performed at the high altitude PUY (Puy de Dîme, 45 ‱ 46 N, 2 ‱ 57 E, 1465 m a.s.l) station, together with LIDAR profiles at Clermont-Ferrand for characterizing FT conditions, and further characterize the physical properties of aerosol in this poorly documented area of the atmosphere. First, a combination of four criteria was used to identify whether the PUY station lies within the FT or within the BL. Results show that the PUY station is located in BL with frequencies ranging from 50% during the winter, up to 97% during the summer. Then, the classification is applied to a year-long dataset (2015) of particle size distribution data to study the differences in particle physical characteristics (size distribution) and black carbon (BC) concentrations between the FT and the BL. Although BC, Aitken, and the accumulation mode particles concentrations were higher in the BL than in the FT in winter and autumn, they were measured to be higher in the FT compared to BL in spring. No significant difference between the BL and the FT concentrations was observed for the nucleation mode particles for all seasons, suggesting a continuous additional source of nucleation mode particles in the FT during winter and autumn. Coarse mode particle concentrations were found higher in the FT than in the BL for all seasons and especially during summer. This indicates an efficient long-range transport of large particles in the FT from distant sources (marine and desert) due to higher wind speeds in the FT compared to BL. For FT air masses, we used 204-h air mass back-trajectories combined with boundary layer height estimations from ECMWF ERA-Interim to assess the time they spent in the FT since their last contact with the BL and to evaluate the impact of this parameter on the aerosol properties. We observed that even after 75 h without any contact with the BL, FT aerosols preserve specific properties of their air mass type

    Beirut Air Pollution and Health Effects -BAPHE study protocol and objectives

    No full text
    International audienceBackground: Recent studies investigating the health effects of air pollution have proven an existing impact around and below international air quality guidelines and standards. These studies were based on accessible data from official registers managed by public authorities. The protocol followed in BAPHE project is described; its benefits and disadvantages are presented and discussed in this paper. Methods: Based on the review of several international studies we developed a custom made approach in BAPHE (Beirut Air Pollution and Health Effects) project in order to analyze the short term health effects of air pollution taking into consideration the lack of data availability from official sources. Results: PM 2.5 and PM 10 concentrations were measured in Beirut for the period starting from the 1 st of January 2012 to the 31 st of December 2012. The annual average concentrations of PM 10 and PM 2.5 exceeded WHO's annual average limits by 150 % and 200 %, respectively. Health data for 11,567 individuals were collected over 12 months. A variation of hospital admission causes was observed by age categories and gender. Conclusions: This article presents a simple protocol and the descriptive results of its application in the frame of an eco-epidemiological study in Lebanon. We believe that this work is not only important on a local scale, but it could be helpful for environmental epidemiological studies in other countries

    Atmospheric dispersion modelling of gaseous emissions from Beirutinternational airport activities

    No full text
    International audienceThe projected increase of civil aviation activity, the degradation of air quality and the location of Beirut Airport embedded in a very urbanized area, in addition to the special geography and topography surrounding the airport which plays a significant role in drawing emissions to larger distances, demanded anassessment of the spatial impact of the airport activities on the air quality of Beirut and its suburbs. This is the first study in the Middle East region that model pollutant concentrations resulting from an international airport's activities using an advanced atmospheric dispersion modelling system in a country with no data. This followed validation campaigns showing very strong correlations (r = 0.85) at validation sites as close as possible to emission sources. The modelling results showed extremely high NO2 concentrations within the airport vicinity, i.e., up to 110 ”g‱m-3 (which is greater than the World Health Organization annual guidelines) posing a health hazard to the workers in the ramp. The major contribution of Beirut-Rafic Hariri International Airport to the degradation of air quality was in the airport vicinity; however, it extended to Beirut and its suburbs in addition to affecting the seashore area due to emissions along the aircraft trajectory; this isan aspect rarely considered in previous studies. On the other hand, elevated volatile organic compound levels were observed near the fuel tanks and at the aerodrome center. This study provides (i) a methodology to assess pollutant concentrations resulting from airport emissions through the use 554 of an advanced dispersion model in a country with no data; and (ii) a tool for policy makers to better understand the contribution of the airport's operations to national pollutant emissions, which is vital for mitigation strategies and health impact assessments
    corecore