930 research outputs found
Specific heat studies of pure Nb3Sn single crystals at low temperature
Specific heat measurements performed on high purity vapor-grown NbSn
crystals show clear features related to both the martensitic and
superconducting transitions. Our measurements indicate that the martensitic
anomaly does not display hysteresis, meaning that the martensitic transition
could be a weak first or a second order thermodynamic transition. Careful
measurements of the two transition temperatures display an inverse correlation
between both temperatures. At low temperature specific heat measurements show
the existence of a single superconducting energy gap feature.Comment: Accepted in Journal of Physics: Condensed Matte
Simultaneous Retrieval of Multiple Aerosol Parameters Using a Multi-Angular Approach
Atmospheric aerosol particles, both natural and anthropogenic, are important to the earth's radiative balance through their direct and indirect effects. They scatter the incoming solar radiation (direct effect) and modify the shortwave reflective properties of clouds by acting as cloud condensation nuclei (indirect effect). Although it has been suggested that aerosols exert a net cooling influence on climate, this effect has received less attention than the radiative forcing due to clouds and greenhouse gases. In order to understand the role that aerosols play in a changing climate, detailed and accurate observations are a prerequisite. The retrieval of aerosol optical properties by satellite remote sensing has proven to be a difficult task. The difficulty results mainly from the tenuous nature and variable composition of aerosols. To date, with single-angle satellite observations, we can only retrieve reliably against dark backgrounds, such as over oceans and dense vegetation. Even then, assumptions must be made concerning the chemical composition of aerosols. In this investigation we examine the feasibility of simultaneous retrieval of multiple aerosol optical parameters using reflectances from a typical set of twelve angles observed by the French POLDER instrument. The retrieved aerosol optical parameters consist of asymmetry factor, single scattering albedo, surface albedo, and optical thickness
Aerosol Retrieval Using Synthetic Polder Multi-Angular Data
The POLarizations and Directionality of the Earth's Reflectances (POLDER) instrument onboard the Japanese ADEOS satellite offers unique possibilities for the retrieval of aerosol parameters with its polarization and multi-angular capability. In this study we examine a technique that simultaneously retrieve multiple aerosol parameters, namely asymmetry factor, single scattering albedo, surface albedo, and optical thickness. using simulated POLDER reflectances. It is found that. over dark or bright surfaces, simultaneous retrieval of multiple parameters is indeed possible, but not over surfaces with intermediate reflectivity. Among the four parameters, the single-scattering albedo is retrieved with the best accuracy and is the least vulnerable when the reflectance value is subjected to a 0.1% white noise
Simultaneous Retrieval of Multiple Aerosol Parameters Using a Multi-Angular Approach
Atmospheric aerosol particles, both natural and anthropogenic, are important to the earth's radiative balance through their direct and indirect effects. They scatter the incoming solar radiation (direct effect) and modify the shortwave reflective properties of clouds by acting as cloud condensation nuclei (indirect effect). Although it has been suggested that aerosols exert a net cooling influence on climate, this effect has received less attention than the radiative forcing due to clouds and greenhouse gases. In order to understand the role that aerosols play in a changing climate, detailed and accurate observations are a prerequisite. The retrieval of aerosol optical properties by satellite remote sensing has proven to be a difficult task. The difficulty results mainly from the tenuous nature and variable composition of aerosols. To date, with single-angle satellite observations, we can only retrieve reliably against dark backgrounds, such as over oceans and dense vegetation. Even then, assumptions must be made concerning the chemical composition of aerosols. The best hope we have for aerosol retrievals over bright backgrounds are observations from multiple angles, such as those provided by the MISR and POLDER instruments. In this investigation we examine the feasibility of simultaneous retrieval of multiple aerosol optical parameters using reflectances from a typical set of twelve angles observed by the French POLDER instrument. The retrieved aerosol optical parameters consist of asymmetry factor, single scattering albedo, surface albedo, and optical thickness
Arithmetic properties of blocks of consecutive integers
This paper provides a survey of results on the greatest prime factor, the
number of distinct prime factors, the greatest squarefree factor and the
greatest m-th powerfree part of a block of consecutive integers, both without
any assumption and under assumption of the abc-conjecture. Finally we prove
that the explicit abc-conjecture implies the Erd\H{o}s-Woods conjecture for
each k>2.Comment: A slightly corrected and extended version of a paper which will
appear in January 2017 in the book From Arithmetic to Zeta-functions
published by Springe
Variations of the McEliece Cryptosystem
Two variations of the McEliece cryptosystem are presented. The first one is
based on a relaxation of the column permutation in the classical McEliece
scrambling process. This is done in such a way that the Hamming weight of the
error, added in the encryption process, can be controlled so that efficient
decryption remains possible. The second variation is based on the use of
spatially coupled moderate-density parity-check codes as secret codes. These
codes are known for their excellent error-correction performance and allow for
a relatively low key size in the cryptosystem. For both variants the security
with respect to known attacks is discussed
Point Contact Spectroscopy of Nb3Sn Crystals: Evidence of a CDW Gap Related to the Martensitic Transition
Two Single crystals of Nb3Sn presenting the martensitic anomaly at different
temperature and shape, as observed with specific heat measurements, were used
to study structural features in the electronic density of states with point
contact spectroscopy. At high temperature below the martensitic anomaly, we
observed different spectroscopic characteristics. One sample displaying a well
marked specific heat peak, shows a clear defined structure in the differential
conductance that evolves with temperature and may be associated with changes on
the density of states due to the opening of a charge density wave gap. Those
features are very depending on the crystallographics characteristics of the
single crystal examined.Comment: 13 pages 6 figures. accepted in Solid State Communicatio
Xenosurveillance reflects traditional sampling techniques for the identification of human pathogens: A comparative study in West Africa
BACKGROUND: Novel surveillance strategies are needed to detect the rapid and continuous emergence of infectious disease agents. Ideally, new sampling strategies should be simple to implement, technologically uncomplicated, and applicable to areas where emergence events are known to occur. To this end, xenosurveillance is a technique that makes use of blood collected by hematophagous arthropods to monitor and identify vertebrate pathogens. Mosquitoes are largely ubiquitous animals that often exist in sizable populations. As well, many domestic or peridomestic species of mosquitoes will preferentially take blood-meals from humans, making them a unique and largely untapped reservoir to collect human blood.
METHODOLOGY/PRINCIPAL FINDINGS: We sought to take advantage of this phenomenon by systematically collecting blood-fed mosquitoes during a field trail in Northern Liberia to determine whether pathogen sequences from blood engorged mosquitoes accurately mirror those obtained directly from humans. Specifically, blood was collected from humans via finger-stick and by aspirating bloodfed mosquitoes from the inside of houses. Shotgun metagenomic sequencing of RNA and DNA derived from these specimens was performed to detect pathogen sequences. Samples obtained from xenosurveillance and from finger-stick blood collection produced a similar number and quality of reads aligning to two human viruses, GB virus C and hepatitis B virus.
CONCLUSIONS/SIGNIFICANCE: This study represents the first systematic comparison between xenosurveillance and more traditional sampling methodologies, while also demonstrating the viability of xenosurveillance as a tool to sample human blood for circulating pathogens
Anharmonic effects in the A15 compounds induced by sublattice distortions
We demonstrate that elastic anomalies and lattice instabilities in the the
A15 compounds are describable in terms of first-principles LDA electronic
structure calculations. We show that at T=0 V_3Si, V_3Ge, and Nb_3Sn are
intrinsically unstable against shears with elastic moduli C_11-C_12 and C_44,
and that the zone center phonons, Gamma_2 and Gamma_12, are either unstable or
extremely soft. We demonstrate that sublattice relaxation (internal strain)
effects are key to understanding the behavior of the A15 materials.Comment: 5 pages, RevTex, 3 postscript figures, Submitted to Phys. Rev. Lett.
Apr. 23, 1997 July 7, 1997: minor corrections, final accepted versio
- …