557 research outputs found

    Autonomic Nervous System Dysfunction in Pediatric Sepsis

    Get PDF
    The autonomic nervous system (ANS) plays a major role in maintaining homeostasis through key adaptive responses to stress, including severe infections and sepsis. The ANS-mediated processes most relevant during sepsis include regulation of cardiac output and vascular tone, control of breathing and airway resistance, inflammation and immune modulation, gastrointestinal motility and digestion, and regulation of body temperature. ANS dysfunction (ANSD) represents an imbalanced or maladaptive response to injury and is prevalent in pediatric sepsis. Most of the evidence on ANSD comes from studies of heart rate variability, which is a marker of ANS function and is inversely correlated with organ dysfunction and mortality. In addition, there is evidence that other measures of ANSD, such as respiratory rate variability, skin thermoregulation, and baroreflex and chemoreflex sensitivity, are associated with outcomes in critical illness. The relevance of understanding ANSD in the context of pediatric sepsis stems from the fact that it might play an important role in the pathophysiology of sepsis, is associated with outcomes, and can be measured continuously and noninvasively. Here we review the physiology and dysfunction of the ANS during critical illness, discuss methods for measuring ANS function in the intensive care unit, and review the diagnostic, prognostic, and therapeutic value of understanding ANSD in pediatric sepsis

    Noncardiac genetic predisposition in sudden infant death syndrome.

    Get PDF
    PURPOSE: Sudden infant death syndrome (SIDS) is the commonest cause of sudden death of an infant; however, the genetic basis remains poorly understood. We aimed to identify noncardiac genes underpinning SIDS and determine their prevalence compared with ethnically matched controls. METHODS: Using exome sequencing we assessed the yield of ultrarare nonsynonymous variants (minor allele frequency [MAF] ≤0.00005, dominant model; MAF ≤0.01, recessive model) in 278 European SIDS cases (62% male; average age =2.7 ± 2 months) versus 973 European controls across 61 noncardiac SIDS-susceptibility genes. The variants were classified according to American College of Medical Genetics and Genomics criteria. Case-control, gene-collapsing analysis was performed in eight candidate biological pathways previously implicated in SIDS pathogenesis. RESULTS: Overall 43/278 SIDS cases harbored an ultrarare single-nucleotide variant compared with 114/973 controls (15.5 vs. 11.7%, p=0.10). Only 2/61 noncardiac genes were significantly overrepresented in cases compared with controls (ECE1, 3/278 [1%] vs. 1/973 [0.1%] p=0.036; SLC6A4, 2/278 [0.7%] vs. 1/973 [0.1%] p=0.049). There was no difference in yield of pathogenic or likely pathogenic variants between cases and controls (1/278 [0.36%] vs. 4/973 [0.41%]; p=1.0). Gene-collapsing analysis did not identify any specific biological pathways to be significantly associated with SIDS. CONCLUSIONS: A monogenic basis for SIDS amongst the previously implicated noncardiac genes and their encoded biological pathways is negligible

    Haddad Syndrome with PHOX2B Gene Mutation in a Korean Infant

    Get PDF
    Congenital central hypoventilation syndrome with Hirschsprung's disease, also known as Haddad syndrome, is an extremely rare disorder with variable symptoms. Recent studies described that congenital central hypoventilation syndrome had deep relation to the mutation of the PHOX2B gene in its diagnosis and phenotype. We report a newborn male infant with clinical manifestations of recurrent hypoventilation with hypercapnea and bowel obstruction. These clinical manifestations were compatible with congenital central hypoventilation syndrome and Hirschsprung's disease, and polyalanine 26 repeats in the PHOX2B gene supported the diagnosis of congenital central hypoventilation. We described a first case of Haddad syndrome in Korean and its clinical and genetic characteristics were discussed

    A Case of Congenital Central Hypoventilation Syndrome with PHOX2B Gene Mutation in a Korean Neonate

    Get PDF
    Congenital central hypoventilation syndrome (CCHS) is a life-threatening disorder with apnea and cyanosis during sleep requiring immediate endotracheal intubation during the first day of life. The PHOX2B gene has been identified as the major gene involved in CCHS. This is the first report of a Korean neonate with CCHS confirmed to have a PHOX2B mutation with expanded alleles containing 20 polyalanine repeats that is a relatively small number compared to previous cases. The patient required intermittent ventilator support during sleep only and did not suffer from any other disorders of the autonomic nerve system. He consistently needs ventilator support during sleep and remains alive. Analysis of PHOX2B gene is useful for diagnosis and appropriate therapeutic intervention of CCHS patients

    Rapid-Onset Obesity with Hypothalamic Dysfunction, Hypoventilation, and Autonomic Dysregulation (ROHHAD): Exome sequencing of trios, monozygotic twins and tumours

    Get PDF
    BACKGROUND: Rapid-onset Obesity with Hypothalamic Dysfunction, Hypoventilation, and Autonomic Dysregulation (ROHHAD) is thought to be a genetic disease caused by de novo mutations, though causative mutations have yet to be identified. We searched for de novo coding mutations among a carefully-diagnosed and clinically homogeneous cohort of 35 ROHHAD patients. METHODS: We sequenced the exomes of seven ROHHAD trios, plus tumours from four of these patients and the unaffected monozygotic (MZ) twin of one (discovery cohort), to identify constitutional and somatic de novo sequence variants. We further analyzed this exome data to search for candidate genes under autosomal dominant and recessive models, and to identify structural variations. Candidate genes were tested by exome or Sanger sequencing in a replication cohort of 28 ROHHAD singletons. RESULTS: The analysis of the trio-based exomes found 13 de novo variants. However, no two patients had de novo variants in the same gene, and additional patient exomes and mutation analysis in the replication cohort did not provide strong genetic evidence to implicate any of these sequence variants in ROHHAD. Somatic comparisons revealed no coding differences between any blood and tumour samples, or between the two discordant MZ twins. Neither autosomal dominant nor recessive analysis yielded candidate genes for ROHHAD, and we did not identify any potentially causative structural variations. CONCLUSIONS: Clinical exome sequencing is highly unlikely to be a useful diagnostic test in patients with true ROHHAD. As ROHHAD has a high risk for fatality if not properly managed, it remains imperative to expand the search for non-exomic genetic risk factors, as well as to investigate other possible mechanisms of disease. In so doing, we will be able to confirm objectively the ROHHAD diagnosis and to contribute to our understanding of obesity, respiratory control, hypothalamic function, and autonomic regulation. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s13023-015-0314-x) contains supplementary material, which is available to authorized users

    Dysregulation of locus coeruleus development in congenital central hypoventilation syndrome.

    Get PDF
    Human congenital central hypoventilation syndrome (CCHS), resulting from mutations in transcription factor PHOX2B, manifests with impaired responses to hypoxemia and hypercapnia especially during sleep. To identify brainstem structures developmentally affected in CCHS, we analyzed two postmortem neonatal-lethal cases with confirmed polyalanine repeat expansion (PARM) or Non-PARM (PHOX2B∆8) mutation of PHOX2B. Both human cases showed neuronal losses within the locus coeruleus (LC), which is important for central noradrenergic signaling. Using a conditionally active transgenic mouse model of the PHOX2B∆8 mutation, we found that early embryonic expression (<E10.5) caused failure of LC neuronal specification and perinatal respiratory lethality. In contrast, later onset (E11.5) of PHOX2B∆8 expression was not deleterious to LC development and perinatal respiratory lethality was rescued, despite failure of chemosensor retrotrapezoid nucleus formation. Our findings indicate that early-onset mutant PHOX2B expression inhibits LC neuronal development in CCHS. They further suggest that such mutations result in dysregulation of central noradrenergic signaling, and therefore, potential for early pharmacologic intervention in humans with CCHS
    corecore