234 research outputs found

    The role of surface free energy in the early in vivo formation of dental plaque on human enamel and polymeric substrata

    Get PDF
    Strips of teflon and cellulose acetate were glued to the upper lateral incisors of human volunteers in a split mouth, double blind study on the influence of the substratum surface free energy (s.f.e.) on supragingival dental plaque accumulation during a three day period of no oral hygiene. Plaque accumulation, microbial composition of the plaque and s.f.e. of the microorganisms were determined and compared to plaque developed on natural enamel surfaces. Significantly less microorganisms colonised the polymer surfaces (p &lt; 0.002). Streptococcus sanguis I was the predominant microorganism found in enamel samples, comprising about one-third of the total microflora, whereas it was recovered infrequently and in lower numbers from the polymeric surfaces, which predominantly contained Streptococcus sanguis II. Only on cellulose acetate sometimes high numbers of Streptococcus mitis and Streptococcus morbillorum were detected. The mean s.f.e. of the total plaque flora was lowest on teflon (84.5 mJ m-2) followed by cellulose acetate (86.0 mJm-2), whereas enamel harboured a microflora with a significantly higher mean s.f.e. (930 mJ m-2; p &lt; 0.05). Also within the same bacterial species lower s.f.e. strains were isolated from the polymer surfaces compared to enamel. The results conform to a previously postulated model in which the interfacial free energy is the driving force for adhesion of microorganisms to solid surfaces.</p

    Radiolysis of NaCl at high and low temperatures: development of size distribution of bubbles and colloids

    Get PDF
    New experimental results are presented on low temperature irradiation (18 °C) of rock-salt samples which had been exposed to initial doses up to 320 GRad at 100 °C. Differential scanning calorimetry (DSC) shows that the latent heat of melting (LHM) of sodium colloids decreases during subsequent low-temperature irradiation, whereas the stored energy (SE) increases slowly, indicating that the process of radiolysis continues. The decrease of the LHM is due to dissolution of large colloids, because the intensities of the melting peaks decrease during the second stage irradiation at low temperature. The model is formulated to describe the nucleation kinetics and the evolution of the size distribution of chlorine precipitates and sodium colloids in NaCl under high dose irradiation. It is shown that the mechanism of dissolution of large Na colloids during low temperature irradiation can be related to melting of sodium colloids.

    Notch signaling during human T cell development

    Get PDF
    Notch signaling is critical during multiple stages of T cell development in both mouse and human. Evidence has emerged in recent years that this pathway might regulate T-lineage differentiation differently between both species. Here, we review our current understanding of how Notch signaling is activated and used during human T cell development. First, we set the stage by describing the developmental steps that make up human T cell development before describing the expression profiles of Notch receptors, ligands, and target genes during this process. To delineate stage-specific roles for Notch signaling during human T cell development, we subsequently try to interpret the functional Notch studies that have been performed in light of these expression profiles and compare this to its suggested role in the mouse

    New insights on human T cell development by quantitative T cell receptor gene rearrangement studies and gene expression profiling

    Get PDF
    To gain more insight into initiation and regulation of T cell receptor (TCR) gene rearrangement during human T cell development, we analyzed TCR gene rearrangements by quantitative PCR analysis in nine consecutive T cell developmental stages, including CD34+ lin− cord blood cells as a reference. The same stages were used for gene expression profiling using DNA microarrays. We show that TCR loci rearrange in a highly ordered way (TCRD-TCRG-TCRB-TCRA) and that the initiating Dδ2-Dδ3 rearrangement occurs at the most immature CD34+CD38−CD1a− stage. TCRB rearrangement starts at the CD34+CD38+CD1a− stage and complete in-frame TCRB rearrangements were first detected in the immature single positive stage. TCRB rearrangement data together with the PTCRA (pTα) expression pattern show that human TCRβ-selection occurs at the CD34+CD38+CD1a+ stage. By combining the TCR rearrangement data with gene expression data, we identified candidate factors for the initiation/regulation of TCR recombination. Our data demonstrate that a number of key events occur earlier than assumed previously; therefore, human T cell development is much more similar to murine T cell development than reported before

    Wnt3a deficiency irreversibly impairs hematopoietic stem cell self-renewal and leads to defects in progenitor cell differentiation

    Get PDF
    Canonical Wnt signaling has been implicated in various aspects of hematopoiesis. Its role is controversial due to different outcomes between various inducible Wnt-signaling loss-of-function models and also compared with gain-of-function systems. We therefore studied a mouse deficient for a Wnt gene that seemed to play a nonredundant role in hematopoiesis. Mice lacking Wnt3a die prenatally around embryonic day (E) 12.5, allowing fetal hematopoiesis to be studied using in vitro assays and transplantation into irradiated recipient mice. Here we show that Wnt3a deficiency leads to a reduction in the numbers of hematopoietic stem cells (HSCs) and progenitor cells in the fetal liver (FL) and to severely reduced reconstitution capacity as measured in secondary transplantation assays. This deficiency is irreversible and cannot be restored by transplantation into Wnt3a competent mice. The impaired long-term repopulation capacity of Wnt3a-/- HSCs could not be explained by altered cell cycle or survival of primitive progenitors. Moreover, Wnt3a deficiency affected myeloid but not B-lymphoid development at the progenitor level, and affected immature thymocyte differentiation. Our results show that Wnt3a signaling not only provides proliferative stimuli, such as for immature thymocytes, but also regulates cell fate decisions of HSC during hematopoiesis

    Cooperation between Wnt and Notch signalling in human breast cancer

    Get PDF
    The Wnt and Notch signalling pathways play major roles in mammary gland development and tumourigenesis. During development, these pathways have opposing effects. However, in a recent paper Ayyanan and coworkers show that expression of Wnt1 is sufficient to transform primary human mammary epithelial cells, and that this is in part due to activation of the Notch pathway. This indicates that during tumourigenesis the two pathways cooperate. Here we ask why activation of Wnt signalling alone is sufficient to cause transformation; whether there is evidence for inhibitory crosstalk between the pathways during tumourigenesis; and whether cooperation between these pathways occurs in other forms of cancer

    Transition from fresh frozen plasma to solvent/detergent plasma in the Netherlands: comparing clinical use and transfusion reaction risks

    Get PDF
    Plasma transfusion is indicated for replenishment of coagulative pro- teins to stop or prevent bleeding. In 2014, the Netherlands switched from using similar to 300mL fresh frozen plasma (FFP) units to using 200mL Omniplasma, a solvent/detergent treated pooled plasma (SD plasma), units. We evaluated the effect of the introduction of SD plasma on clinical plasma use, associated bleeding, and transfusion reaction incidences. Using diagnostic data from six Dutch hospitals, national blood bank data, and national hemovigilance data for 2011 to 2017, we compared the plasma/red blood cell (RBC) units ratio (f) and the mean number of plasma and RBC units transfused for FFP (similar to 300mL) and SD plasma (200mL) for various patient groups, and calculated odds ratios comparing their associated transfusion reaction risks. Analyzing 13,910 transfusion episodes, the difference (Delta f = f(SD) (-) f(FFP)) in mean plasma/RBC ratio (f) was negligible (Delta f(entire-cohort) = 0.01 [95% confidence interval (CI): -0.02 - 0.05]; P=0.48). SD plasma was associated with fewer RBC units transfused per episode in gynecological (difference of mean number of units -1.66 [95% CI: -2.72, -0.61]) and aneurysm (-0.97 [-1.59, -0.35]) patients. SD plasma was further associated with fewer anaphylactic reactions than FFP (odds ratio 0.37 [0.18, 0.77; P<0.01]) while the differences for most transfusion reactions were not statistically significant. SD plasma units, despite being one third smaller in volume than FFP units, are not associated with a higher plasma/RBC ratio. SD plasma is associated with fewer anaphylactic reactions than FFP plasma/RBC units ratio.Clinical epidemiolog

    Peripheral T-lymphocytes express WNT7A and its restoration in leukemia-derived lymphoblasts inhibits cell proliferation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>WNT7a, a member of the Wnt ligand family implicated in several developmental processes, has also been reported to be dysregulated in some types of tumors; however, its function and implication in oncogenesis is poorly understood. Moreover, the expression of this gene and the role that it plays in the biology of blood cells remains unclear. In addition to determining the expression of the <it>WNT7A </it>gene in blood cells, in leukemia-derived cell lines, and in samples of patients with leukemia, the aim of this study was to seek the effect of this gene in proliferation.</p> <p>Methods</p> <p>We analyzed peripheral blood mononuclear cells, sorted CD3 and CD19 cells, four leukemia-derived cell lines, and blood samples from 14 patients with Acute lymphoblastic leukemia (ALL), and 19 clinically healthy subjects. Reverse transcription followed by quantitative Real-time Polymerase chain reaction (qRT-PCR) analysis were performed to determine relative <it>WNT7A </it>expression. Restoration of WNT7a was done employing a lentiviral system and by using a recombinant human protein. Cell proliferation was measured by addition of WST-1 to cell cultures.</p> <p>Results</p> <p>WNT7a is mainly produced by CD3 T-lymphocytes, its expression decreases upon activation, and it is severely reduced in leukemia-derived cell lines, as well as in the blood samples of patients with ALL when compared with healthy controls (<it>p </it>≤0.001). By restoring <it>WNT7A </it>expression in leukemia-derived cells, we were able to demonstrate that WNT7a inhibits cell growth. A similar effect was observed when a recombinant human WNT7a protein was used. Interestingly, restoration of <it>WNT7A </it>expression in Jurkat cells did not activate the canonical Wnt/β-catenin pathway.</p> <p>Conclusions</p> <p>To our knowledge, this is the first report evidencing quantitatively decreased <it>WNT7A </it>levels in leukemia-derived cells and that <it>WNT7A </it>restoration in T-lymphocytes inhibits cell proliferation. In addition, our results also support the possible function of <it>WNT7A </it>as a tumor suppressor gene as well as a therapeutic tool.</p
    corecore