14 research outputs found

    The effect of simulator dynamics on pilot response

    Get PDF
    The effects of visual display dynamics on the altitude tracking performance of a subject in a fixed base flight simulator are considered. The subject, flying the linearized longitudinal equations of motion, attempts to maintain the same altitude as two airplanes positioned three hundred feet ahead, as in level formation flying. The horizon together with the two leading aircraft are represented symbolically on a CRT display. The subject's aircraft is disturbed by atmospheric turbulence. The data indicate a relationship between the bandwidth of the display dynamics and the short period characteristics of the simulated airplane. For an airplane with a relatively fast pitch response the presence of altitude display dynamics, with a bandwidth as high as five times the short period natural frequency, causes significant degradation of altitude tracking performance

    Effects of visual flight display dynamics on altitude tracking performance in a flight simulator

    Get PDF
    The effects were studied of visual display dynamics on pilot tracking performance in a simulator. The tracking task consisted of maintaining the piloted aircraft at the same altitude as two aircraft positioned three-hundred feet ahead; as would be required in level formation flying. The two leading aircraft were represented symbolically along with the horizon on a CRT display. Vertical position of these aircraft with respect to the horizon indicated the altitude of the subject's aircraft, which was disturbed by atmospheric turbulence. Various bandwidths of second-order dynamics were interposed between the true aircraft altitude and the displayed altitude, whereas no dynamics were interposed in the attitude display. Experiments were run using two experienced pilots and two substantially different longitudinal dynamics for the piloted aircraft. Preliminary results indicate a significant decrease in altitude tracking performance for display dynamics with natural frequencies below ten radians per second

    Potential Molecular Mechanisms of Rare Anti-Tumor Immune Response by SARS-CoV-2 in Isolated Cases of Lymphomas

    Get PDF
    Recently, two cases of complete remission of classical Hodgkin lymphoma (cHL) and follicular lymphoma (FL) after SARS-CoV-2 infection were reported. However, the precise molecular mechanism of this rare event is yet to be understood. Here, we hypothesize a potential anti-tumor immune response of SARS-CoV-2 and based on a computational approach show that: (i) SARS-CoV-2 Spike-RBD may bind to the extracellular domains of CD15, CD27, CD45, and CD152 receptors of cHL or FL and may directly inhibit cell proliferation. (ii) Alternately, upon internalization after binding to these CD molecules, the SARS-CoV-2 membrane (M) protein and ORF3a may bind to gamma-tubulin complex component 3 (GCP3) at its tubulin gamma-1 chain (TUBG1) binding site. (iii) The M protein may also interact with TUBG1, blocking its binding to GCP3. (iv) Both the M and ORF3a proteins may render the GCP2-GCP3 lateral binding where the M protein possibly interacts with GCP2 at its GCP3 binding site and the ORF3a protein to GCP3 at its GCP2 interacting residues. (v) Interactions of the M and ORF3a proteins with these gamma-tubulin ring complex components potentially block the initial process of microtubule nucleation, leading to cell-cycle arrest and apoptosis. (vi) The Spike-RBD may also interact with and block PD-1 signaling similar to pembrolizumab and nivolumab- like monoclonal antibodies and may induce B-cell apoptosis and remission. (vii) Finally, the TRADD interacting “PVQLSY” motif of Epstein-Barr virus LMP-1, that is responsible for NF-kB mediated oncogenesis, potentially interacts with SARS-CoV-2 M(pro), NSP7, NSP10, and spike (S) proteins, and may inhibit the LMP-1 mediated cell proliferation. Taken together, our results suggest a possible therapeutic potential of SARS-CoV-2 in lymphoproliferative disorders

    Merging of hard spheres by photo-triggered micromanipulation

    No full text
    By careful design of the dendritic mol. the phys. properties of the self-assembled structure can be tuned in such a way that phototriggered micromanipulation and merging of hard spheres is possible. This possibility leads to the bottom-up synthesis of micrometer-sized objects through a combination of covalent synthesis and supramol. organization followed by micromanipulation
    corecore