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Abstract: Recently, two cases of complete remission of classical Hodgkin lymphoma (cHL) and fol-
licular lymphoma (FL) after SARS-CoV-2 infection were reported. However, the precise molecular 
mechanism of this rare event is yet to be understood. Here, we hypothesize a potential anti-tumor 
immune response of SARS-CoV-2 and based on a computational approach show that: (i) SARS-
CoV-2 Spike-RBD may bind to the extracellular domains of CD15, CD27, CD45, and CD152 recep-
tors of cHL or FL and may directly inhibit cell proliferation. (ii) Alternately, upon internalization 
after binding to these CD molecules, the SARS-CoV-2 membrane (M) protein and ORF3a may bind 
to gamma-tubulin complex component 3 (GCP3) at its tubulin gamma-1 chain (TUBG1) binding 
site. (iii) The M protein may also interact with TUBG1, blocking its binding to GCP3. (iv) Both the 
M and ORF3a proteins may render the GCP2-GCP3 lateral binding where the M protein possibly 
interacts with GCP2 at its GCP3 binding site and the ORF3a protein to GCP3 at its GCP2 interacting 
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residues. (v) Interactions of the M and ORF3a proteins with these gamma-tubulin ring complex 
components potentially block the initial process of microtubule nucleation, leading to cell-cycle ar-
rest and apoptosis. (vi) The Spike-RBD may also interact with and block PD-1 signaling similar to 
pembrolizumab and nivolumab- like monoclonal antibodies and may induce B-cell apoptosis and 
remission. (vii) Finally, the TRADD interacting “PVQLSY” motif of Epstein-Barr virus LMP-1, that 
is responsible for NF-kB mediated oncogenesis, potentially interacts with SARS-CoV-2 Mpro, NSP7, 
NSP0, and spike (S) proteins, and may inhibit the LMP-1 mediated cell proliferation. Taken together, 
our results suggest a possible therapeutic potential of SARS-CoV-2 in lymphoproliferative disor-
ders. 

Keywords: lymphoma; cancer; SARS-CoV-2; M protein; ORF3a; anti-tumor immunotherapy; 
gamma-tubulin ring complex; PD-1; monoclonal antibody 
 

1. Introduction 
In most cases, cancer is either reported to be a comorbid condition, or associated with 

COVID-19 disease severity from SARS-CoV-2 infection [1]. However, it was recently re-
ported that a patient with classical Hodgkin lymphoma (cHL) showed disease remission 
upon infection with SARS-CoV-2 [2]. A similar observation has been reported in a case of 
follicular lymphoma (FL) [3]. The molecular profiles and the infecting SARS-CoV-2 strains 
of these patients are unknown, and the authors suggest that the complete remission of the 
diseases is due to an unknown anti-tumor immune response exerted by SARS-CoV-2 [1,2]. 
These findings have prompted us to elaborate on the molecular mechanisms behind the 
SARS-CoV-2 induced remission of cHL and FL. 

To place the anti-tumor effect of the SARS-CoV-2 possessing a single-stranded RNA 
(ssRNA) genome in the right context, it is appropriate to mention that several other ssRNA 
viruses have demonstrated oncolytic activity, leading to efficient killing of tumor cells 
while causing no damage to normal tissue [4]. This oncolytic effect is not unique to RNA 
viruses as it has also been documented for DNA viruses, such as adenoviruses, herpes 
simplex viruses, and vaccinia viruses [5]. The oncolytic activity of viruses relates to the 
induction of high expression of protein kinase PKR, the interferon signaling pathway, and 
the activation of caspases inducing apoptotic cell death [6]. Alphaviruses, measles viruses, 
rhabdoviruses, and Newcastle disease viruses (NDV) have been used in preclinical animal 
models and in clinical trials, showing encouraging results for cancer therapy [7]. How-
ever, the oncolytic effects of viruses vary. For instance, significantly lower Zinc-finger an-
tiviral protein (ZAP) expression in tumors prevented the viral RNA degradation and 
translational inhibition of the oncolytic M1 alphavirus commonly occurring in normal tis-
sue [8]. In the case of measles viruses, it has been demonstrated that CD46 mediates virus 
attachment, entry, and virus-induced cell-to-cell fusion for the MV–Edmonston strain [9]. 
Typically, the high density of CD46 on tumor cells contributes to extensive cell fusion and 
enhancement of viral gene expression and provides a compelling explanation for the on-
colytic specificity of the MV–Edmonston strain and its favorable use for CD46-targeted 
cancer therapy. Related to rhabdoviruses, genome-wide RNAi screening identified the 
endoplasmic reticulum (ER) stress response pathways as important modulators for sensi-
tization to caspase-2-dependent apoptosis and cell death [10]. The tumor-cell-killing 
mechanisms of the NDVare based directly on the formation of multinucleated syncytia, 
activation of the extrinsic apoptotic pathway, activation of ER stress pathways, and in-
volvement of MAPK pathways [11]. Indirectly, NDV can induce secretion of proinflam-
matory cytokines and chemokines, enhanced adhesion of leukocytes, upregulation of 
MHC, and cell adhesion molecules to activate tumor-specific lymphocytes. 
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The cHL neoplastic cell population is called Hodgkin or Reed–Sternberg (HRS) cells, 
which exclusively express CD30 and CD15, a cluster of differentiation (CD) markers. Ad-
ditionally, CD40, CD80, CD86, and CD95 are expressed in most cHL cases, and CD20, 
CD45, and CD3 are rarely expressed by the HRS [12,13]. However, some reports suggest 
that CD20 is expressed at very low intensity in 5 to 80% of cases of cHL [14]. Other ex-
pressed proteins by the cHL (5–100% cases) are CD19, CD79a, CD138, paired box protein 
Pax-5 (PAX5), also known as B-cell-specific transcription factor (BSAP), and interferon 
regulatory factor (4IRF4), also known as multiple myeloma oncogene 1, (MUM1) [14]. 
Gamma-glutamyltransferase 1 (GGT1) could also be a potential marker for cHL [15], and 
cytotoxic T-lymphocyte associated protein 4 (CTLA-4) is expressed in programmed cell 
death-1 (PD-1) negative cHL [16]. On the other hand, CD19 is exclusively expressed, and 
CD20 is also found in some cases of FL  [17]. 

 cHL cells exclusively express CD30, and brentuximab vedotin (SGN-35 or Adcetris) 
is an FDA-approved CD30 targeted drug for the treatment of cHL [18]. SGN-35 is an anti-
CD30 monoclonal antibody (mAb) attached to an anti-microtubule compound monome-
thyl auristatin E (MMAE). Upon binding to CD30, SGN-35 is internalized into cHL cells 
and releases MMAE that binds to tubulin and thus leads to cell-cycle arrest and apoptosis 
[18]. However, 20% to 30% of cHL cases  were found to relapse [19]. Anti-CD20 mAbs 
such as rituximab are used to treat FL. Anti-CD19 and anti-CD47 mAbs may also be at-
tractive targets for immunotherapy of FL [20]. 

Genomic amplification 9p24.1 in cHL has been associated with overexpression of 
programmed  death ligand 1 (PD-L1) and activation of Janus kinase 1 and signal trans-
ducer and activator of transcription (JAK/STAT) signaling for disease relapse. Therefore, 
blocking PD-L1 and PD-L2 receptor PD-1 could be a better treatment option. More re-
cently, T-cell checkpoint inhibitory mAbs such as nivolumab and pembrolizumab against 
PD-1 have been found to increase the overall survival in cHL [21,22]. Both pembrolizumab 
and nivolumab bind to the PD-L1 binding site of PD-1 and block the access of PD-L1 and 
PD-L2, thus preventing the relapse of cHL [21]. FL can also express PD-1, and therefore, 
PD-1 immune checkpoint blockers such as pembrolizumab can also be promising targeted 
therapeutics in FL [20]. 

It is well-established that Epstein–Barr virus (EBV) infection is associated with in-
creased risk, pathogenesis, and immunocompromised conditions  in the elderly with 
cHL [23,24]. EBV-positive FL is not rare, and EBV may play a specific role in disease pro-
gression and/or lymphomagenesis [25]. The latent oncogenic membrane protein 1 (LMP-
1) of EBV activates NF-κB, JAK/STAT, and PI3K/AKT pathways, leading to apoptosis-
prone germinal center (GC) B-cells and prevention of plasma cell differentiation [23]. The 
cytoplasmic signaling domain of LMP-1 recruits tumor necrosis factor receptor-associated 
factors (TRAFs) and tumor necrosis factor receptor type 1-associated DEATH domain pro-
tein (TRADD) to activate NF-kB signaling-mediated B-cell proliferation [26]. 

The patient was EBV positive in the cHL case report, although no genetic or molecu-
lar profiles were provided [2]. Neither have any information in the case of FL been re-
ported [3]. Therefore, it is difficult to evaluate the underlying molecular mechanism of the 
disease remission due to SARS-CoV-2 infection. Hence, we considered all possible genetic 
makeups of these patients. In our first hypothesis (i), we assume that SARS-CoV-2 brings 
remission in cHL/FL cells using a similar mechanism as brentuximab vedotin (SGN-35 or 
Adcetris) does. In this process, we presumed that the SARS-CoV-2 might bind to the ex-
tracellular domain of any cHL-specific cell surface CD marker using its Spike-RBD to at-
tach and enter into  lymphoma cells. Upon internalization, some protein of SARS-CoV-2 
may interact with cell division-related proteins to bring apoptosis or cell-cycle arrest or 
termination of cell division. The second possibility/hypothesis (ii) is that as the patient 
was positive for EBV, some SARS-CoV-2 protein may interact with the LMP-1 of EBV 
upon internalization of SARS-CoV-2 into the cell to inhibit the interaction of LMP-1- 
TRAFs and/or TRADD from abolishing the LMP-1 mediated cell proliferation or cell de-
differentiation. In the third hypothesis (iii), we presume that any protein of SARS-CoV-2 
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may bind to PD-1, similar to the targeted mAb drugs pembrolizumab or nivolumab, and 
induce remission of cHL/FL. 

2. Materials and Methods 
2.1. Protein Structures and 3D Modeling 

Crystal structures used in this study are provided in Table S1. Since the SARS-CoV-
2 strains of the infected lymphoma patients are unknown, we have used SARS-CoV-2 pro-
teins of the original Wuhan, China strain (GenBank: NC_045512). The crystal structures 
of human CD30/TNFRSF8 (NP_001234.3), CD15/FUT4 (NP_002024.1), SARS-CoV-2 mem-
brane (M) protein (YP_009724393.1), and LMP-1 (YP_401722.1) of EBV are unavailable. It 
is likely that the inability to crystallize the CD30, CD15, and LMP-1 of EBV is determined 
not only by their transmembrane nature but is also associated with high levels of intrinsic 
disorder predicted in these proteins (Supplementary File S1). Therefore, we used I-
TASSER [27] and RaptorX web servers [28] to model these proteins. The models were fur-
ther refined using GalaxyRefine [29], and the stereochemical quality of the protein struc-
tures were determined using the PROCHECK tool available at the SAVES v6.0 server 
(https://saves.mbi.ucla.edu/ (accessed on10 May 2021)). Finally, models were selected for 
further analysis based on residues in the most favored region of the Ramachandran plot. 
The TMHMM Server v.2.0 (http://www.cbs.dtu.dk/services/TMHMM/ (accessed on 10 
May 2021)) was used to determine the transmembrane helices and extracellular sequences 
of all proteins. 

2.2. Protein–Protein Docking 
We performed protein–protein docking using ZDOCK [30] and HDOCK [31] servers. 

We identified the binding sites/residues from crystal structures using Ligplot+ v.2.2 [32] 
and from the literature in most cases. However, when we did not have access to such 
residue knowledge, we performed blind docking. The top ten complexes from ZDOCK or 
HDOCK were used for further analysis, selecting specific criteria as per the specific objec-
tive of the docking (see: Section 3). UCSF Chimera [33] was used to visualize and analyze 
the crystal structures and the docked complexes. 

3. Results 
3.1. 3D Protein Models 

Compared to I-TASSER [27], a better model was obtained using RaptorX [28] for hu-
man CD30, human CD15, and the SARS-CoV-2 M protein. The RaptorX derived CD30 
model was similar to previously described models [34,35]. Therefore, we used this struc-
ture of CD30 for protein–protein docking after refinement using GalaxyRefine [29]. The 
Ramachandran plot of the refined CD30 structure (Figure 1A) showed that 87.0% of the 
residues are in the most favorable regions (Table 1, Figure S1). TMHMM analysis sug-
gested that residues 1 to 385 of the CD30 are exposed to the exterior of the cell and there-
fore, this area was used in docking experiments. For CD15, the final modeled structure 
(Figure 1B) showed a Ramachandran plot with 92.0% residues in the most favorable re-
gions (Table 1, Figure S2). Residues 171 to 530 of CD15 were found on the exterior of the 
cell as per  TMHMM analysis. RaptorX-derived SARS-CoV-2 M protein when refined 
with GalaxyRefine (Figure 1C), showed a Ramachandran plot with 92.5% of residues in 
the most favorable regions (Table 1, Figure S3) and as per  TMHMM, the residues 1-19 
and 74-77 of the M protein were predicted to be extracellular. While we modeled the LMP-
1 of the EBV following the same method, 96% of residues were found in the most favorable 
regions of the Ramachandran plot (Figures S4 and S5). However, this refined structure 
showed five transmembrane helices. According to a previous report [26], the LMP-1 has 
six transmembrane helices, which we obtained directly from the RaptorX. Therefore, we 
did not use the GalaxyRefine derived structure of LMP-1 (Figures S4 and S5) for further 
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analysis and docking but used the RaptorX-derived LMP-1 model, containing six trans-
membrane helices (Figure 1D), which showed 87.7% of residues in the most favorable re-
gions of the Ramachandran plot (Table 1, Figure S6). The TMHMM algorithm did not 
generate any result for LMP-1. Therefore, we considered the membrane topology as de-
scribed by Kieser, 2007 [26]. All these selected 3D models were used for protein–protein 
docking. 

 
Figure 1. Modeled 3D structures (ribbon view) of proteins and their topology. (A) Human CD30, (B) human CD15, (C) 
SARS-CoV-2 M protein, and (D) Epstein-Barr virus LMP-1 protein. Note: the red color shows the extracellular location 
and corresponding amino acid residues, green shows the transmembrane location and corresponding amino acid residues, 
and purple color indicates the intracellular or cytoplasmic location and corresponding amino acid residues. 

Table 1. Ramachandran plot information of the modeled proteins. 

Proteins 
% of Residues in 

Most Favored 
Regions 

Additional 
Allowed Regions 

Generously 
Allowed Regions 

Disallowed 
Regions 

Human CD30 87.0 11.0 1.4 0.6 
Human CD15 92.0 7.5 0.0 0.5 
EBV LMP-1 96.0 4.0 0.0 0.0 

SASR-CoV-2 M protein 92.5 7.0 0.5 0.0 
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3.2. Spike-RBD May Bind to CD15, CD27, CD45, and CD152 Receptors of cHL or FL 
The first step of SARS-CoV-2 infection is the attachment of the virus to human cells 

at the human angiotensin-converting enzyme 2 (hACE2) through its S protein receptor-
binding domain (RBD), which then facilitates cell membrane fusion for entry into human 
cells [36,37]. To evaluate our first hypothesis if the S protein binds to any cell surface re-
ceptor of cHL/FL, we performed protein–protein docking between the Spike-RBD and re-
ported lymphoma cell surface markers (CD15, CD20, CD27, CD30, CD40, CD45, CD80, 
CD86, CD95, and CTLA-4/ CD152) using the ZDOCK server [30]. 

In general, a receptor-binding site of a protein should be in open conformation to 
bind to its ligand. An in silico structural analysis also predicts that a “1up2down” confor-
mation of the Spike-RBD (one open and two closed monomers of the S protein homotri-
mer) probably is required prior to binding to the hACE2 [38]. Similarly, the critical resi-
dues of the Spike-RBD that interact with the hACE2 are Lys417, Tyr453, Gln474, Ph e486, 
Gln498, Thr500, and Asn501 [39]. However, any peptide that inhibits the interaction of the 
Spike-RBD and the hACE2 must bind to three key positions of the Spike-RBD 
(Gly485/Phe486/Asn487, Gln493, and Gln498/Thr500/Asn501) [40]. To verify and stand-
ardize the ZDOCK- or HDOCK-based Spike-RBD and human CD receptor docking, we 
used the crystal structure of the Spike-RBD- hACE2 complex (PDB: 6LZG, the structure of 
novel coronavirus spike receptor-binding domain complexed with its receptor hACE2, 
Method: X-Ray diffraction, Resolution: 2.50 Å) and characterized the interacting residues 
using Ligplot+ v.2.2. The results showed that the Spike-RBD interacts with the hACE2 
through  Lys417, Tyr449, Ala475, Asn487, Gly496, Gln498, Thr500, and Gly502 residues 
forming 10 H-bonds (Figure S7). While we combined these results and our additional 
structure-based analysis, we observed that four regions of the Spike-RBD—(i) R1—
Lys417, Tyr449, Tyr453, and its adjacent residues; (ii) R2—Gln498–Tyr502; (iii) R3—
Gln474, Ala475, Phe486, Asn487; (iv) R4—Gly496, Gln493—residues could be critical for 
strong interaction with any receptor. R2 and R3 are probably the most essential regions 
(Figure S8). 

According to the ZDOCK results, the cell-exposed domain of CD15 (171-530 aa) po-
tentially interacts with the spike-RBD residues, creating 13 H-bonds in complex 3, involv-
ing its predicted four regions (R1—Tyr449, Asn450, Tyr453; R2—Gln498, Thr500; R3—
Asn487; R4—Ser494). In complex 4, the RBD binds to CD15, forming 11 H-bonds covering 
all four regions (R1—Tyr449; R2—Gln498, Asn501, R3—Tyr473, Asn487; R4—Gln493, 
Gly496). In complex 6, the RBD also interacts with CD15 involving four regions (R1—
Lys417, Tyr449; R2—Gly502; R3—Glu484; R4—Gly496) and forming nine H-bonds (Table 
2, Figure 2A, Figures S9–S11, Table S2A). ZDOCK did not provide any good result for 
CD20 (CD antigen 20 or membrane-spanning 4-domains subfamily A member 1, MS4A1) 
and the Spike-RBD docking (Table S2B), and since the IRF4/MUM1 is a nuclear protein, 
we excluded this cHL marker from this analysis. The Spike-RBD interacts with CD antigen 
30/tumor necrosis factor receptor superfamily member 7 (CD27/TNFRSF7, extracellular 
domain 20–191 aa) using four binding regions in complex 8 (R1—Lys417, Tyr449, Tyr453; 
R2—Gln498; R3—Ala475; R4—Gln493) and in complex 9 (R1—Lys417, Tyr453; R2—
Gln498, Thr500; R3—Asn487; R4—Gln493) (Table 2, Figure 2B, Figures S12 and S13). Com-
plex 8 and complex 9 form  10 H-bonds (Table S2C). A maximum 11 H-bonds may be 
formed between the Spike-RBD and the cell-surface-exposed (1 to 385aa) residues of the 
human CD30 (complex-5). In this complex, the Spike-RBD may bind to CD 30 in two re-
gions (R1—Tyr453; R4—Gln493), and in complex 3, it binds again in two regions (R1—
Lys417; R2—Thr500) but forms a total of 5 H-bonds with three other residues (Figures S14 
and S15, Table S2D). Therefore, CD30 may not be a good candidate to act as a receptor for 
the S-RBD. The S-RBD possibly interacts with maximum 10 H-bonds in two complexes 
with the extracellular domain of CD antigen 40/ tumor necrosis factor receptor superfam-
ily member 5 (CD40/TNFRSF5, residues 21-193). In complex 8, it covers three regions 
(R1—Lys417, Tyr449, Tyr453; R2—Gln498; R3—Ala475), and in complex 9, it interacts 
with four regions (R1—Lys417; R2—Gln498, Thr500; R3—Asn487; R4—Gln493) (Figures 
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S16 and S17, Table S2E). Although in complex 9 the Spike-RBD used all four regions to 
interact with CD40, we did not see any other complex involving all the four regions. 
Therefore, CD40 also may not be a good receptor for the SARS-CoV-2 S protein. In 
ZDOCK docking, the Spike-RBD interacts with the CD45 (CD antigen 45 or receptor-type 
tyrosine-protein phosphatase C, PTPRC) extracellular domain (26- 577 aa) with a maxi-
mum nine H-bonds plus two salt bridges in complex-3, where the Spike-RBD involves 
four binding regions, each with one residue (R1—Lys417; R2—Gln498; R3—Asn487; R4—
Gln493). In complex 8, the Spike-RBD also interacts using four regions forming six H-
bonds plus two salt bridges and using six residues (R1—Lys417, Tyr453; R2—Gln498, 
Asn501, R3—Asn487; R4—Gln493) (Table 2, Figure 2C, Figures S18 and S19, Table S2F). 
Therefore, CD45 could be a good candidate for the Spike-RBD interaction. For CD80 (CD 
antigen 80 or T-lymphocyte activation antigen CD80) extracellular domain (35-242 aa), the 
Spike-RBD forms a total of nine H-bonds in complex 9 and uses three regions (R1—
Lys417, Tyr449; R2—Gln498; R4—Gly496) and in complex 3 (total eight H-bonds) it also 
involves three regions (R2—Asn501; R3—Ala475; R4—Gln493) (Figures S20 and S21, Ta-
ble S2G). Although complex 9 involves all  four regions, they only make four H-bonds. 
Therefore, the Spike-RBD may not also interact with CD 80. When we docked the Spike-
RBD with the extracellular domain of CD86 (CD antigen 86 or T-lymphocyte activation 
antigen CD86), (24-247 aa), we found that the Spike-RBD may bind through only three 
regions (R1—Lys417, Tyr453; R2—Asn501, R4—Gly496) in complex 2 that forms a total of 
10 H-bonds. In complex 9, the Spike-RBD forms eight H-bonds; however, it uses three 
regions (R1—Tyr449; R2—Gln498, Thr500; R4—Gln493). Therefore, CD86 also may not be 
a good candidate that can act as a receptor for SARS-CoV-2 attachment to human cells 
(Figures S22 and S23, Table S2H). In CD95 (CD antigen 95 or tumor necrosis factor recep-
tor superfamily member 6 or Apoptosis-mediating surface antigen FAS) extracellular do-
main (26-173 aa) and the Spike-RBD docking, we observed two complexes that show good 
interactions involving three regions. In complex 2, the Spike-RBD involves R1—Lys417, 
Tyr449; R3—Asn487; R4—Gln493, and in complex 10, the Spike-RBD uses R1—Thr449; 
R2—Gln498, Thr500; R3—Asn487 (Figures S24 and S25, Table S2I). The Spike-RBD inter-
acts with our last tested receptor CTLA4/CD152 (cytotoxic T-lymphocyte protein 4 or CD 
antigen 125) extracellular domain (36-161 aa) using all four regions in complex 2, where 
the Spike-RBD interacts using residues (R1—Tyr449; R2—Gln498; R3—Asn487; R4—
Gln493, Gly496) forming 11 H-bonds. Furthermore, in complex 3, the Spike-RBD involves 
three key regions (R1—Gly449, Tyr453; R2—Gln498, Asn501, Thr500; R4—Ser494) to in-
teract with CD152 forming 10 H-bonds (Table 2, Figure 2D, Figures S26 and S27; Table 
S2J). Therefore, CD152 may interact with the Spike-RBD and facilitate SARS-CoV-2 attach-
ment and infection. 

Therefore, considering the total number of H-bonds and maximum interacting re-
gions and residues of the Spike-RBD, we predicted that CD15, CD27, CD45, and CD152 
are top candidates that may act as receptors for the SARS-CoV-2 S protein and can facili-
tate virus attachment and its subsequent entry into  cHL cells (Figure 2A–D). 

Table 2. Details of interacting top four human CD protein residues (bold) with SARS-CoV-2 RBD residues (Roman). 

Protein Complexes Docked Complex 
Number Interacting Residues 

CD15- Spike RBD 

3 
Trp-500-Tyr505, Arg428-Thr500, Glu502-Gln498, Glu-502-Tyr449, Trp504-Gly446, Asp-210-

Tyr453, Pro207-Ser494, Arg206-Tyr449, Arg206-Ser494, Arg206-Asn450, Leu178-Tyr489, 
Leu178-Asn487 

4 
Gly340-Tyr449, Ser344-Gln498, Ser344-Gly496, Ser344-Asn501, Arg449-Asn487, Leu333-

Tyr489, Glu448-Tyr473, Ser337-Ser494, Ser337-Leu492, Arg336-Gln493 

6 
Arg214-Gly496, Asp210-Tyr449, Arg212-Glu484, Ser498-Gly446, Leu178-Lys417, Gln174-

Asp405, Tyr169-Tyr505, Cys171-Gly502 

CD27- Spike RBD 8 
Ile46-Gln498, Ser50-Gln498, Thr57-Gln493, Leu29-Tyr453, His60-Tyr495, Cys61-Tyr449, 

Gln15-Tyr421, Trp13-Ala475, Trp13-Tyr489 
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9 
Arg87-Tyr495, Trp90-Gln498, Asn88-Gln498, Asn88-Thr500, Gly70-Gln493, Leu72-Tyr453, 

Leu72-Arg403, Ser63-Asn487, Ser63-Tyr489, Gly48-Lys417 

CD45- Spike RBD 
3 

Lys210-Glu484, His191-Cys488, Ile235-Asn487, Lys157-Tyr473, Lys157-Arg457, Pro186-
Gln493, Gln187-Arg403, His134-Asn460, Asn184-Gln498 

8 
Ile235-Asn487, His191-Cys488, Pro186-Gln493, Gln187-Tyr453, Asn184-Gln498, Gln167-

Asn501 

CD152- Spike 
RBD 

2 
Asp118-Tyr449, Asp118-Gly496, Pro119-Gln498, Gly111-Asn487, Ala86-Gln493, Met87-

Ser494, Ala42-Tyr421, Gln45-Asp420, Gln45-Tyr421, Asp43-Arg457 

3 
Met87-Gln498, Asp88-Asn501, Asp88-Thr500, Arg40-Gly446, Tyr104-Tyr489, Ile67-Tyr505, 

Glu48-Tyr453, Thr47-Ser494, Val46-Ser494 

 

Figure 2. The 3D structures (surface and ribbon views) of human CDs and the Spike-RBD interac-
tions. For interacting residues, see Table 2 and the corresponding supplement 2D Figure(s). (A) The 
Spike-RBD (fire brick) binding to human CD15 (light green) (corresponding to complex 3, Figure 
S9, 13 H-bonds, involving four regions of the Spike-RBD; (B) The Spike-RBD (fire brick) binding to 
human CD27 (sky blue) (corresponding to complex 9, Figure S13, 10 H-bonds, involving four re-
gions of the Spike-RBD, (C) The Spike-RBD (fire brick) binding to human CD45 (gold) and the Spike-
RBD (corresponding to complex 8, Figure S19, eight H-bonds, involving four regions of the Spike-
RBD, and (D) The Spike-RBD (fire brick) binding to human CD152 (slate grey) and the Spike-RBD 
(corresponding to complex 2, Figure S26, 11 H-bonds, involving four regions of the Spike-RBD). 

3.3. The SARS-CoV-2 M and ORF3a Proteins Interact with the Human Gamma-Tubulin 
Complex Components and May Inhibit Tubulin Nucleation 

During microtubule (MT) polymerization, the gamma-tubulin ring complex is ini-
tially formed as a gamma-tubulin small complex. In this process, each of the GCP2 and 
GCP3 molecules recruits one TUBG1 molecule at its top and then forms a heterodimer 
binding through their lateral positions to start the MT nucleation process. Alpha- and 
beta-tubulin form heterodimers, and through alpha-tubulin, these heterodimers bind to 
gamma-tubulin. The other GCPs (GCP4, 5, and 6) also follow the same process, and fi-
nally, the microtubule polymerization starts [41,42]. 
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As part of our first hypothesis, next, we focused on identifying whether any SARS-
CoV-2 protein interacts with the tubulin complex-forming components and blocks the mi-
crotubule formation to arrest the cell cycle. According to Gordon et al. [43], the SARS-
CoV-2 M protein interacts with the human gamma-tubulin complex component 2 (TUB-
GCP2/ GCP2) and gamma-tubulin complex component 3 (TUBGCP3/GCP3). Similarly, 
Chen et al., reported that SARS-CoV-2 ORF3a potentially interacts with GCP2, GCP3, and 
even gamma-tubulin (TUBG1) [44]. However, in none of the cases, the authors have pro-
vided any further details about the binding sites and the effect of these interactions. 

Therefore, if the M or ORF3 protein inhibits MT nucleation to restrict the cell cycle, it 
should bind to any of these three possible areas: (i) the sites where the GCP2 and GCP3 
bind laterally to form heterodimers (ii) the gamma-tubulin binding sites of GCP2 or CGP3, 
and (iii) the TUBG1 sites that are used to interact with GCP2 or GCP3. 

To understand this interaction, first we identified the binding residues between 
GCP2 and GCP3. For this purpose, we used two crystal structures: the human GCP2–
GCP3 complex (PDB: 6V6B) and the human gamma-tubulin ring complex (PDB: 6V6S). 
Next, we standardized the residue positions of PDB: 6V6S corresponding to PDB: 6V6B, 
and we noted the interacting residues in the GCP2–GCP3 complex according to PDB: 
6V6B using Ligplot+ v.2.2. We identified the interacting residues between GCP2-GCP3 at 
lateral positions as GCP2: Ser283, Gly396, Glu242, Gln350; GCP3: Arg252, Ser323, His343, 
Gln529, which form three H-bonds and one salt bridge (Figures 3A and S28). We found 
that the chains C/G (GCP2) and B/F (GCP3) of PDB: 6V6S show similar interactions as the 
interactions found in PDB: 6V6B. 

Since there is no crystal structure for GCP2–TUBG1 and GCP3–TUBG1, we identified 
the interactions between TUBG1–GCP2 and TUBG1–GCP3 the gamma-tubulin ring com-
plex (PDB: 6V6S) using Ligplot+ v.2.2 and considered that at least two complexes in this 
ring complex should show similar interactions. Furthermore, the corresponding residues 
of GCP3 and TUBG1 were identified in PDB: 6V6B and PDB: 6V5V through structural 
overlapping using UCSF Chimera. A similar approach was applied to identify GCP2 and 
TUBG1 interacting residues. We observed that GCP2 (chains C/G) (PDB: 6V6B) interacts 
with TUBG1 (PDB: 6V5V) using 10 H-bonds and two salt bridges (TUBG1: Arg3, Arg47, 
Tyr248, Ile254, Ser259, Pro262, Asp329, Pro353, Ala354, Gln357; GCP2: Asp554, Asp561, 
Cys684, Arg711, Asn716, Gln719, Asn720, Glu731, His735, Asn890) (Figures S29 and S30) 
and GCP3 (chains B/F) (PDB: 6V6S) interacts with TUBG1 (PDB: 6V5V) using 14 H-bonds 
and three salt bridges (TUBG1: Arg3, Thr45, Arg47, Pro162, Lys163, Asn198, Tyr248, 
Asp252, Pro265, His334, Arg341, Trp351, Ser355, Gln357; GCP3: Asp572, Arg575, Lys671, 
Asp579, Asn609, Arg681, Lys682, Cys686, Lys689, Ser709, Gln717, Gln719, Glu725, 
Glu884, His885) (Figures S31 and S32). 

3.4. The M and ORF3a Proteins May Interact at GCP2–GCP3 Lateral Binding Sites 
To explore if the M and ORF3a proteins hinder the lateral binding of GCP2 and GCP3, 

we selected the GCP2 (GCP2: Ser283, Gly396, Glu242, Gln350) and GCP3 (GCP3: Arg252, 
Ser323, His343, Gln529) interacting residues and docked them with the M and ORF3a pro-
teins using the HDOCK server. Among the four residues of GCP2 that form three H-bonds 
with GCP3, the M protein may interact with two residues (Ser283 and Gln350) along with 
two nearby residues, forming six H-bonds (complex-7) (Table 3, Figures 3B and S33, Table 
S3A). In complex 3, GCP2 interacts with the M protein, forming nine H-bonds (Thr235, 
Ser243, Arg290, Ser393) (Table 3, Figure S34, Table S3A). However, the residues are not 
the same as the ones that interact with GCP3. When we performed the docking between 
the SARS-CoV-2 M protein with GCP3 targeting its GCP2 binding residues, only one res-
idue (Arg252) of GCP3 interacted in three different complexes (complex-4, -6, -7). How-
ever, other interacting residues of GCP3 are not also close to the mapped interacting resi-
dues involved in GCP2-GCP3 interaction (Table S3B). 

We performed a similar analysis with the ORF3a protein as we did for the M protein. 
Although the ORF3a protein interacts with GCP2 with a maximum of seven H-bonds 
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(complex 4), it does not involve any residue of GCP2 that interacts with GCP3 (Table 3, 
Figure S35, Table S4A). On the other hand, the ORF3a protein potentially interacts with 
GCP3 at its GCP2 binding site. In complex 7 it makes five H-bonds, and one salt bridge 
involves two residues (out of four) of GCP3 (Ser323, Arg252, His343-salt bridge) that are 
involved in lateral binding with GCP2 and the other two residues (Gln322, Arg333) (Table 
3, Figures 3C and S36, Table S4B). In complex 3 it makes seven H-bonds and involves 
seven residues of GCP3; however, only one residue (Arg252) interacts with GCP2 (Table 
3, Figure S37, Table S4B). 

Taken together, the M protein may not bind to GCP3 at its GCP2 interacting site. 
However, the M protein possibly interacts with GCP2 at its GCP3 binding site using two 
residues (out of four) (Table 3, Figures 3A,B, S28 and S36). On the other hand, the ORF3a 
may interact with GCP3, blocking at least three (out of four) of its GCP2 binding residues 
(Table 3, Figures 3A,C and S36, Table S4B). Therefore, the potential interactions of M–
GCP2 or ORF3a–GCP3 may affect the GCP2–GCP3 lateral binding and hinder microtu-
bule nucleation. 

Table 3. Interacting human microtubule ring complex protein residues (bold) with SARS-CoV-2 protein residues (Roman). 

Protein Complexes Docked Complex 
Number Interacting Residues 

GCP2-CoV-2 M Protein 
(Lateral Position) 

7 
Arg290-Cys33, Arg290-Thr30, Trp353-Thr30, Trp353-Phe26, Gln350-Lys50, Ser283-

Asn43 

3 
Ser243-Ser173, Ser243-Arg174, Thr235-Arg198, Arg290-Leu56, Ser393-Asn5,  Ser393-

Thr7 
GCP2- Orf3a 

(Lateral Position) 
4 

Arg361-Asp210, Ser393-Ile236, Glu242-Lys61, Asp397-Ser209, Trp353-Asp142, 
Arg290-Tyr189 

GCP3-Orf3a 
(Lateral Position) 

7 Arg333-Asp142, Arg252-Ser165, Ser323-Lys61, Gln322-Lys61, His343-Asp210 

3 
Tyr256-Val163, Arg252-Val163, Arg337-Ile118, Arg333-Asn119, Gln416-Tyr107, 

Arg315-Lys61, Gln322-Ser58 
GCP2-M Protein 

(At GCP2 residues that 
interact with TUBG1) 

5 Asp554-Lys205, Tyr723-Asn117, Arg711-Glu137, Asp561-Thr208, Ser885-Arg101 

1 Ser885-Arg105, Ser885-Arg101, Cys684-Cys86, Glu731-Gln36 

GCP3-M Protein 
(At GCP3 residues that 
interact with TUBG1) 

1 
Phe612-Gln36, Gln570-Gln36, Ser709-Arg131, Ser709-His154, Lys689-Glu137, Thr678-

Arg107, Glu728-Arg42, Gly569-Arg42, Tyr720-Asn41, Lys671-Tyr39 

5 
Phe612-Gln36, Arg681-Glu137, Glu728-Arg42, Ser709-His154, His716-Arg107, 

Asn883-His155, Gly571-Arg105, Asp572-Arg105 
GCP2-Orf3a 

(At GCP2 residues that 
interact with TUBG1) 

3 Cys684-Val163, Gln719-Ser166, Tyr723-Ser166, Asn890-Tyr215 

9 
Gln722-Lys192, Gln719-Trp193, Cys684-His182, Asn716-Cys153, Gln712-Asn152, 

Asp561-His227, Arg681-Gly174 
GCP3-Orf3a 

(At GCP3 residues that 
interact with TUBG1 

1 
His716-Asp210, Tyr720-Asp210, Asn883-Asn144, Gln717-Tyr145, Ser709-Ser162, 

Arg681-Ser166, Arg681-Thr164, Thr678-Ser165 
3 His702-Leu83, Glu728-Lys192, Asn609-Thr151, Gln570-Asn152, Gln717-Trp69 

TUBG1-M Protein 
(At TUBG1 residues that 

interact with GCP2) 

1 
Pro350-Arg131, Trp351-Arg131, Asp442-His125, Arg341-Leu134, Asn251-Gln36, 

His334-Arg101, Tyr248-Tyr47, Asp252-Arg42 

7 
Leu276-Arg44, Tyr273-Arg42, Lys363-Phe37, Glu38-Arg105, Ser32-Arg101, Lys23-

Arg105, Ser80-107, Thr234-Tyr39, Thr234-Asn41 

8 
Glu426-Arg131, Pro162-Arg42, Asp200-Arg42, Gln197-Trp110, Pro-264-Tyr39, 
Thr196-Asn41, Arg265-Asn41, Asp433-Arg107, Asp419-Thr127, Asp422-His125 

TUBG1-M Protein 
(At TUBG1 residues that 

interact with GCP3) 

1 
Pro350-Arg131, Trp351- Arg131, Asp442-His125, Arg341-Leu134, Asn251-Gln36, 

His334-Arg101, Tyr248-Tyr47, Asp252-Arg42 

8 
Glu426-Arg131, Pro162-Arg42, Asp200-Arg42, Gln197-Trp110, Pro-264-Tyr39, 
Thr196-Asn41, Arg265-Asn41, Asp433-Arg107, Asp419-Thr127, Asp422-His125 

9 
Gln357-Thr127, Thr331-Arg131, His334-Leu156, Ser355-His125, Arg341-Asp160, 

Glu327-Asn41 

TUBG1-orf3a 3 
Val130-Lys136, Arg212-Tyr154, Arg390-Arg134, Arg390-Asp134, Asp216-Arg68, 

Arg343-Leu83, Gln394-Asn152 
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(At TUBG1 residues that 
interact with GCP2) 

1 Arg341-Phe207, His334-Tyr211, Gln357-Ile124, Tyr248-Cys130 

TUBG1-orf3a 
(At TUBG1 residues that 

interact with GCP3) 

1 Arg341-Phe207, His334-Tyr211, Gln357-Ile124, Tyr248-130 

3 
Val305-Lys136, Arg212-Tyr154, Arg390-Asp155, Arg390-Arg134, Asp216-Arg68, 

Arg343-Leu83, Gln394-Asn152 

 

Figure 3. The 3D structures (surface and superimposed views) of the M protein and ORF3a interac-
tions with the GCP2–GCP3 complex. For interacting residues, see the corresponding supplement 
2D Figure(s) and Table 3. (A) The lateral binding positions of GCP2 (dark cyan) and GCP3 (sienna) 
in the native human gamma-tubulin ring complex crystal structure (PDB: 6V6B), corresponding to 
Figure S28. (B) Binding of the M protein (forest green) to GCP2 (dark cyan) at its GCP3 binding 
lateral position (front and 180-degree rotation views, corresponding to complex 7 and Figure S33. 
(C) Binding of the ORF3a protein (navy blue) to GCP3 (sienna) at its GCP2 binding lateral position 
(front and 180-degree rotation views, corresponding to complex 7 and Figure S36). 

3.5. Both the M and ORF3a Proteins May Interact with GCP3 at Its TUBG1 Binding Sites 
To understand if the M and ORF3a proteins interact with TUBG1, we docked both 

proteins at four different positions: (i) TUBG1 binding sites/residues of GCP2, (ii) TUBG1 
binding sites/residues of GCP3, (iii) GCP2 binding sites/residues of TUBG1, and (iv) GCP3 
binding sites/residues of TUBG1. 

Out of 10 GCP2 residues that interact with TUBG1, the M protein can maximally bind 
to three such GCP2 residues (Asp554, Arg711, Asp561) and two additional residues 
(Tyr723, Ser885) in complex 5, forming six H-bonds (Table 3, Figure S38, Table S3C). In 
complex 1, the interactions show five H-bonds. However, only 3 GCP2 residues (Glu731, 
Cys684, Ser885) interact with TUBG1 (Table 3, Figure S39, Table S3C). The M protein in-
teracts with GCP3 using maximally 10 H-bonds involving three key residues (Lys671, 
Lys689, Ser709) and six other residues of GCP3 in complex 1 (Table 3, Figures 4A–C and 
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S40, Table S3D). In complex 5, the M protein binds to three TUBG1 interacting residues of 
GCP3 (Asp572, Arg681, Ser709) and four other residues (Gly571, Phe612, His716, Asn883), 
which are close to the TUBG1 interacting residues of GCP3 forming eight H-bonds (Table 
3, Figure S41, Table S3D). 

The ORF3a protein binds to the TUBG1 interacting GCP2 residues in two complexes 
(complex 3 and 9), forming seven H-bonds. In complex 9, seven residues are involved 
where four residues (Gln719, Cys684, Asn716, Asp561) interact with TUBG1 (Table 3, Fig-
ure S42, Table S4C). However, in complex 3, only four residues of GCP2 interact with the 
ORF3a protein, where three residues (Cys684, Gln719, Asn890) of GCP2 interact with 
TUBG1 (Table 3, Figure S43, Table S4C). In GCP3 (TUBG1 binding site) -ORF3a interac-
tion, in complex 1, GCP3 interacts with the ORF3a protein involving seven residues and 
12 H-bonds, where three residues of GCP3 (Arg681, Ser709, Gln717) interact with TUBG1 
(Table 3, Figures 4D-F and S44, Table S4D). In complex 3 we found that five H-bonds and 
only two such GCP3 residues (Asn609, Gln717) interact with the ORF3a protein (Table 3, 
Figure S45, Table S4D). 

Therefore, our results suggest that the SARS-CoV-2 M protein may interact with the 
TUBG1 binding site of GCP3 and probably block GCP3 binding to TUBG1. However, con-
sidering the number of H-bonds and the number of GCP residues involved, the ORF3a 
protein may bind to GCP3 at its TUBG1 binding site more strongly than GCP2. The prob-
able 3D interactions are shown in Table 3 and Figure 4A–F. Since both the M and ORF3a 
proteins are probably interacting with GCP3 at its TUBG1 binding sites, we also per-
formed a superimposition analysis that also shows the M and ORF3a protein interaction 
with GCP3 may inhibit TUBG1 binding to GCP3 (Table 3, Figure 4G,H). Nevertheless, 
additional analyses are needed if these interactions of the M and ORF3a proteins inhibit 
TUBG1 binding to GCP3. 

 

Figure 4. The 3D structures (surface, ribbon, and superimposed views) of the M protein and ORF3a 
protein interactions with GCP3 at its TUBG1 binding site. For interacting residues, see the corre-
sponding supplement 2D Figure (s) and Table 3. (A) Superimposed (front view) structure showing 
the SARS-CoV-2 M protein (spring green) binding to GCP3 (sienna) at its TUBG1 (purple) binding 
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position, blocking GCP3-TUBG1 interaction (corresponding to complex 1, Figure S40); (B) its lateral 
view; and (C) its top views. (D) Front view structure showing the SARS-CoV-2 ORF3a protein (gold) 
binding to GCP3 (sienna) at its TUBG1 (purple) binding position, blocking GCP3-TUBG1 interaction 
(corresponding to complex 1, Figure S44); (E) its lateral view; and (F) its top views. (G) Superim-
posed (front view) complex of both the M and ORF3a protein binding to GCP3 at its TUBG1 binding 
site; and (H) its front and top views. 

3.6. The M but not the ORF3a Protein May Strongly Interact with TUBG1 at Its GCP3 Binding 
Sites 

In docking studies of the M protein with TUBG1 binding sites that interact with 
GCP2, no interaction involving the GCP2 binding residue of TUBG1 was detected except 
in complex 1, where only one matching residue (Tyr248) was observed. However, in this 
model, we found nine H-bonds (Table 3, Figure S46, Table S3E). Similarly, in complexes 7 
and 8, the M protein interacted with TUBG1 using 9 and 10 H-bonds, respectively (Table 
3, Figures S47 and S48, Table S3E). For TUBG1 binding sites for GCP3, we got better re-
sults. The M protein can bind with nine H-bonds (complex-1) and involves five residues 
(Tyr248, Asp252, His334, Arg341, Trp351) of TUBG1 (out of 14) that interact with GCP3 
(Table 3, Figures 5A–D and S49, Table S3F). In complexes 8 and 9, the M protein interacts 
with TUBG1 making 10 and 7 H-bonds, respectively. In complex 8 it uses two common 
residues (Pro162, Arg265), and in complex 9 four common residues (His334, Arg341, 
Ser355, Gln357) (Table 3, Figures S50 and S51, Table S3F). 

In the ORF3a protein, although it makes seven H-bonds in complex 3, it does not 
involve any TUBG1 residue that interacts with GCP2. However, in complex 1, only four 
H-bonds are formed by four residues, where only two residues (Tyr248, Gln357) of 
TUBG1 are involved in binding with GCP2 (Table 3, Figures S52 and S53, Table S4E). In 
the case of GCP3, we also found the same trend. Out of 16 TUBG1 residues, that interact 
with GCP3, only four of them (Tyr248, His334, Arg341, Gln357) probably bind to the 
ORF3a protein, forming four H-bonds in complex 1 (Table 3, Figures 5E–H and S54, Table 
S4F). In this complex, His334 and Arg341 form H-bonds with the ORF3a protein. How-
ever, in TUBG1-GCP3 interaction, these two residues of TUBG1 form salt bridges. In com-
plex 3, a total of six residues of TUBG1 (Arg212, Asp216, Val305, Arg343, Arg390, Gln394) 
bind with the ORF3a protein making seven H-bonds. However, none of these TUBG1 res-
idues interact with GCP3 (Table 3, Figure S55, Table S4F). 

Taken together, our analysis suggests that the M protein may bind to TUBG1, block-
ing its binding to GCP3 more strongly than GCP2. The probable 3D interactions between 
TUBG1-M are shown in Table 3, Figures 5A-D and S49, and Table S3F. Considering the 
number and specific residues of TUBG1 involved in GCP2 and GCP3 interactions, it is 
unlikely that the same residues interact with the ORF3a protein and interfere with TUBG1 
binding to GCP2 and GCP3 (Table 3, Figures 5–H and S54, Table S4F). 
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Figure 5. The 3D structure (surface, ribbon, and superimposed views) of TUBG1-M and TUBG1-
ORF3a interactions at the GCP3 binding site of TUBG1. For interacting residues, see the correspond-
ing supplement 2D Figure(s) and Table 3. (A) Superimposed view of the M protein (spring green) 
binding to TUBG1 (purple) at its GCP3 binding position, blocking GCP3–TUBG1 interaction (corre-
sponding to complex 1, Figure S49); (B) front surface view; (C) front ribbon view; and (D) superim-
posed top view. (E) Superimposed view of the ORF3a protein (gold) binding to TUBG1 (purple) at 
its GCP3 binding position, blocking GCP3–TUBG1 interaction (corresponding to complex 1, Figure 
S54); (F) front surface view; (G) front ribbon view; and (H) superimposed top view. 

3.7. LMP-1 Signaling Domains of EBV Potentially Interact with SARS-CoV-2 Proteins 
The LMP-1 protein of EBV is essential for EBV-associated oncogenesis. Since the cHL 

patient described by Challenor and Tucker [2] tested positive for EBV, we assess in our 
second hypothesis that some SARS-CoV-2 proteins might inhibit the oncogenic signaling 
of LMP-1 by binding to its cytoplasmic signaling motif residues 204-208 aa/“PQQAT” and 
379-384 aa/“PVQLSY” that recruit TRAFs and TRADD, respectively, to activate the onco-
genic NF-kB signaling-induced B-cell proliferation [26]. 

To test this second hypothesis, we performed a SARS-CoV-2 proteome-wide docking 
with our modeled LMP-1 using ZDOCK. In this docking, we selected the LMP-1 residues 
202-210 aa (TRAFs binding site) and 375-386 aa (TRADD interacting site) and docked them 
with SARS-CoV-2 proteins without selecting any residues. We considered few principles 
in this analysis, (i) since the LMP-1 interacting motifs of TRAFs or TRADD are only 4-5 
amino acids of length, a SARS-CoV-2 protein must interact with at least two critical amino 
acids of any of these motifs, and (ii) since more than two ZDOCK models should show 
the same interacting amino acids of TRAFs or TRADD binding motifs with hydrogen 
bonds. 

Based on these criteria, we found that out of the 25 SARS-CoV-2 proteins we docked, 
seven proteins, namely PLpro/nsp3 (Gln381, Ser383, Tyr384, Asp386), 3CLpro/Mpro (Ser383, 
Tyr384, Tyr385), NSP7 (Gln381, Ser383, Tyr384, Tyr385), NSP10 (Gln381, Ser383, Tyr384, 
Tyr385), RdRp/NSP12 (Gln381, Ser383, Tyr385, Asp386), Spike (Gln381, Tyr384, Tyr385), 
and ORF8 (Gln381, Ser383), which may potentially block the TRADD interacting motif of 
LMP-1 (Table 4, Table S5A–Y). 

For activation of NF-kB, TRADD binding to the PVQLSY motif of LMP-1 is essential, 
and mutations in the Tyr384 and Tyr385 residues of LMP-1 stop the TRADD interaction 
with LMP-1 [26]. Considering these facts and our results, it is therefore suggested that 
3CLpro/Mpro (Table 4, Figure 6A, Figures S56–S58), NSP7 (Table 4, Figure 6B, Figures S59–
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S61), NSP10 (Table 4, Figure 6C, Figures S62 and S63), and Spike (Table 4, Figure 6D, Fig-
ures S64–S66) proteins of SARS-CoV-2 may bind to the LMP-1 of EBV at its TRADD bind-
ing residues, restricting the access of TRADDs to LMP-1, therefore,  potentially inhibiting 
the NF-kB oncogenic signaling for B-cell proliferation in this patient. 

Table 4. Interacting Epstein–Barr virus LMP-1 and human PD residues with SARS-CoV-2 protein residues. The non-SARS-
CoV-2 protein residues are shown in bold. 

Protein Complexes 
Docked Complex 

Number Interacting Residues 

LMP-1 and 
3CLpro/Mpro 

1 
His352-Asn274, Tyr384-Asn274, Tyr385-Gly275, Leu382-Asn277, Ser383-

Asn277, Ser367-Ala285 

9 
Ser383-Asn277, Tyr385-Arg279, Tyr384-Glu270, Ser313-Glu270, Ser313-

Lys269, Thr324-Gln273, Glu328-Lys236 

10 
Gln381-Arg298, Gln381-Gly302, Gln381-Ser301, Gly345-Thr304, Asp341-
Gln306, Asp341-Phe305, Ser347-Ser1, Ser383-Ser1, Val228-Arg4, Ala231-

Phe3 

LMP-1 and nsp7 

6 
Ser383-Leu60, Tyr385-Leu59, Tyr385-Met62, Ser367-Met62, Ser367-Leu20, 

Gly368-Leu20, Gly371-Arg21, Ser369-Ser24 

7 
Tyr384-Gly64, Ser313-Lys70, Tyr385-Leu59, Tyr385-Met62, Gln381-Ser61, 

Ser367-Ser61, Ser367-Val58, Gly371-Ser26 

8 
Ser313-Lys70, Ser367-Leu20, Tyr385-Met62, Tyr385-Leu59, Tyr385-Val66, 

Ser383-Leu60, Gln381-Ser61 

LMP-1 and nsp10 
2 

Ser313-Asp65, Ser383-His63, Gln381-His63, Tyr384-His63, Tyr385-His63, 
Ser367-Arg61, Gly365-Cys62, Glu325-Asp5 

8 
Tyr385-Ser112, Tyr385-Arg117, Ser383-Arg117, Tyr384-Cys113, Gln381-

Glu118, Ser347-Leu121, His346-Gln122, Thr324-Val102 

LMP-1 and Spike 
RBD 

6 
His352-Tyr489, Gln381-Gln493, Tyr384-Tyr489, Tyr384-Asn487, Tyr385-

Lys417 

7 
Tyr384-Asn487, His352-Asn487, His352-Tyr489, Asp386-Tyr421, Ser367-

Leu492, Ser367-Phe490, Ser367-Gln493 

8 
Pro376-Asn501, Pro376-Gln498, Gly344-Tyr453, Asp341-Lys417, 

Tyr385-Phe486, Ser229-Asn487, Gln381-Glu484 

PD-1 and Spike 
RBD 

2 
Thr53-Tyr505, His107-Tyr505, Arg104-Tyr505, Ser55-Tyr453, Thr36-

Tyr453, Glu136-Tyr489, Lys135-Cys488, Trp32-Glu484, Asn58-Tyr449 

7 
Ser127-Tyr489, Ala129-Tyr489, Leu100-Tyr449, Pro101-Gln498, Phe63-

Gln493, Tyr68-Glu484 

8 
Asp77-Gln493, Lys78-Phe490, Arg94-Tyr505, Ile126-Phe486, Gln75-

Tyr449, Ser71-Tyr449, Ser71-Gly446, Ser73-Gly446 
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Figure 6. The 3D structures (surface and ribbon views) of SARS-CoV-2 proteins binding to LMP-1 
and PD-1—Spike-RBD interactions. For interacting residues, see Table 4 and corresponding supple-
ment 2D Figure(s). (A) 3CLpro/Mpro (dark magenta) binding to LMP-1 (forest green) (corresponding 
to complex 9, Figure S57, seven H-bonds); (B) NSP7 (orange) binding to LMP-1 (forest green) (cor-
responding to complex 7, Figure S60, eight H-bonds); (C) NSP10 (cornflower blue) binding to LMP-
1 (forest green) (corresponding to complex 2, Figure S62, nine H-bonds); and (D) Spike protein (fire 
brick) binding to LMP-1 (forest green) (corresponding to complex 6, Figure S64, 5 H-bonds). (E) The 
Spike-RBD (fire brick) binding to PD-1 (dark slate blue) at its nivolumab binding sites (correspond-
ing to complex 2, Figure S67, 8 H-bonds); and (F) The Spike-RBD (fire brick) binding to PD-1 (dark 
slate blue) at its pembrolizumab binding sites (corresponding to complex 8, Figure S69, 10 H-bonds). 

3.8. Does the Spike Protein Interact with PD-1 to Block Access to PD-L1 and PD-L2? 
Finally, we checked our third possible mechanism, i.e., whether the SARS-CoV-2 

Spike protein interacts with PD-1 and acts similarly to the T-cell checkpoint inhibiting 
monoclonal antibodies (mAbs) like nivolumab and pembrolizumab to induce PD-1 medi-
ated apoptosis. 

To check the feasibility of this hypothesis, we first mapped the binding residues be-
tween PD-1 and these two mAbs from PD-1 in complex with pembrolizumab Fab (PDB: 
5GGS) and PD-1 in complex with nivolumab-Fab (PDB: 5WT9) through a literature search 
[45,46]. It was found that pembrolizumab-Fab interacts with PD-1 residues (Phe63, Asn66, 
Thr76, Lys78, Glu84, Ser87, Gly90, Lys131, Ala132) and nivolumab-Fab binds to PD-1 res-
idues (Leu25, Ser27, Pro28, Asp29, Arg30, Thr59, Ser60, Leu128, Ala129, Prp130, Lys131, 
Ala132). After this mapping, we performed Spike-RBD (without selecting any residue) 
and PD-1 (selecting residues that interact with nivolumab and pembrolizumab) docking 
using ZDOCK. Although no interaction of the Spike-RBD was detected with PD-1, the 
complex 2 that forms eight H-bonds showed that the Spike-RBD could interact with PD-
1 near the stretch of nivolumab interacting residues of PD-1 (Table 4, Figures 6E and S67, 
Table S6). On the other hand, complexes 7 and 8 form 6 and 10 H-bonds, respectively, 
where the Spike-RBD may interact with the stretch of pembrolizumab interacting residues 
of PD-1 (Figure 6F, Table 4, Figures S68 and S69, Table S6). 

Although the Spike-RBD does not bind exactly to the pembrolizumab and nivolumab 
interacting residues of PD-1, it may interact with PD-1 at very close proximity to the PD-
1 residues that interact with these two mAbs. Therefore, the Spike-RBD may bind to PD-
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1 and may act as pembrolizumab and nivolumab-like mAbs to block access to PD-L1 and 
PD-L2 leading to cHL cell apoptosis and remission. 

4. Discussion 
During the initial days of the COVID-19 pandemic, there were no reports of any di-

rect correlation between SARS-CoV-2 and lymphoma. However, in December 2020, based 
on a multi-omics approach, we predicted that lymphoma would have an association with 
COVID-19 [47,48]. In January 2021, Challenor and Tucker first brought to our attention 
that a 61-year-old man with cHL and who tested positive for EBV showed complete re-
mission of cHL after he was infected with SARS-CoV-2 [2]. The second case was reported 
by Sollini et al. in February 2021, where a 61-year-old patient suffering from FL showed 
complete remission upon SARS-CoV-2 infection [3]. The molecular mechanisms behind 
the SARS-CoV-2 induced remission of these lymphoma cases are yet to be understood. 

Challenor and Tucker suggested that  SARS-CoV-2 may induce an unknown spe-
cific anti-tumor immune response mechanism [2] that may also be responsible for a pre-
viously reported case of spontaneous regression of diffuse large B-cell lymphoma 
(DLBCL) after infection with Clostridium difficile [49]. Similarly, Sollini et al. [3] suggested 
that the SARS-CoV-2-induced remission of their reported FL case was probably due to a 
“flare phenomenon” as observed in immunotherapy that finally results in an “abscopal 
effect”. 

A recent report in May 2021 from Spain also suggested that SARS-CoV-2 triggers an 
anti-tumor immune response in lymphoma [50]. In addition, a 22-year-old Hodgkin lym-
phoma patient suffering from COVID-19 was successfully treated with the PD-1 inhibitor 
pembrolizumab [51], and the cHL was generally treated with CD30 targeting brentuximab 
vedotin [18]. Therefore, like the anti-tumor mechanisms of other oncolytic  ssRNA vi-
ruses [4,8–11], we also focused on possible anti-tumor immune responses by SARS-CoV-
2 in the reported cHL and FL cases, hypothesizing three possible mechanisms. As per our 
results, the proposed overall mechanisms of SARS-CoV-2-induced remission of cHL and 
FL cases are presented in Figure 7. 

ACE2 is expressed in lymphomas [52] and SARS-CoV-2 infection is associated with 
increased severity and mortality in lymphomas [53]. However, these SARS-CoV-2-in-
duced remissions of cHL and FL are very isolated events [2,3] compared to global cHL 
and FL cases and the magnitude of the COVID-19 pandemic. Additionally, the molecular 
profiles of these patients [2,3] are unknown. Therefore, it is not likely to be a general mech-
anism to explain this remission phenomenon. Our first hypothesis-based results show 
that, the initial contact and attachment of SARS-CoV-2 to  cHL or FL cells in these two 
cases may be possible through the interactions between the SARS-CoV-2 Spike-RBD and 
cell-surface markers for cHL or FL such as CD15, CD27, CD45, and CD152 (Table 2, Figure 
2A-D). 

Previous reports suggest that some unclassified FL expresses CD15 [54] and CD27 
[55]. Expression of CD152 is also reported in cHL [12,56]. CD15 is also expressed in some 
specific groups of cHL patients [57,58] and its expression can predict the disease outcome 
[59]. Circulating blood cells in cHL patients show clonal expression of CD27 [60]. CD15 is 
also required for cell adhesion to platelets to promote cell proliferation and migration be-
yond the lymphatic system [61]. Therefore, CD15 may be a potential target in cHL. CD27 
activates protein kinase C (PKC) and induces cellular proliferation in B-cell lymphomas 
[62] and anti-CD27 mAb shows antitumor activity [63]. CD45 is also aberrantly expressed 
in certain cases of lymphomas [64,65], and phosphatase activity of CD45 is required for 
lymphoid cell proliferation [66]. Inhibition of CD45 phosphatase activity negatively regu-
lates Src family tyrosine kinase (SFK) signaling and thereby induces G2/M cell-cycle arrest 
and cell apoptosis [66]. Therefore, CD45 could be a possible therapeutic target in lym-
phoma. Similarly, activation of CD152/ CTLA4 induces cell proliferation and tumor 
growth in lymphomas through activation of the TYK2-STAT3 pathway [67], and anti-
CD152 mAb ipilimumab could be a potential targeted therapeutic for lymphomas [67,68]. 
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PD-1 is upregulated in lymphomas, a hallmark of EBV-associated lymphoproliferative 
disorders, and this overexpression is associated with disease relapse [69,70]. Dual target-
ing of PD-1 and CD152 using combinations of anti-PD-1 and anti- CD152 mAbs may be a 
potential therapy in relapsed lymphoid malignancies [71]. 

Based on these facts, if we assume that these two patients [2,3] express any of these 
very specific receptors such as CD15, CD27, CD45, and CD152 that are not commonly 
expressed in cHL and FL, and that the SARS-CoV-2 Spike-RBD may bind to any of these 
receptors like a mAb and thereafter works in a similar fashion to brentuximab vedotin 
(SGN-35 or Adcetris), this suggests a possible molecular mechanism of the remission of 
the lymphoma patients as described by Challenor and Tucker [2] and Sollini et al. [3]. As 
the expression of CD15, CD27, CD45, and CD152 is also associated with lymphoma cell 
proliferation these CD molecules can be therapeutic targets [61–63,66–68]. If the Spike-
RBD interaction inhibits the CD expression, it may also induce cell-cycle arrest and apop-
tosis. 

. 

Figure 7. Proposed overall mechanisms of SARS-CoV-2 induced anti-tumor immune response in 
lymphoma. The SARS-CoV-2 Spike-RBD probably binds to CD15, CD27, CD45, and CD152 and may 
directly inhibit cell proliferation. Alternately, after binding to these CDs, SARS-CoV-2 may internal-
ize into host cHL or FL cells. After entry into cancer cells, the M  and ORF3a proteins block GCP2 
–GCP3-TUBG1 interactions and thereby inhibit MT nucleation leading to cell-cycle arrest or cell 
death. Additionally, the  SARS-CoV-2 Spike protein may also interact with PD-1 to block PD-1 sig-
naling, leading to cell-cycle arrest or cell death. The SARS-CoV-2 Mpro, Spike, NSP7, and NSP10 were 
also found to potentially interact with the TRADD binding motif of the EBV oncogenic LMP-1 pro-
tein. This interaction may also lead to the regulation of the NF-kB oncogenic signaling pathway in 
cHL or FL. The Figure is developed by BioRender (www.biorender.com, accessed on 24 September 
2021). 

Our analysis found that the Spike-RBD can potentially interact with CD15, CD27, 
CD45, and CD152 expressed by lymphoma cells (Table 2, Figure 2A-D). As per our first 
hypothesis, after attachment to lymphoma cells through CD15, CD27, CD45 or CD152, the 
SARS-CoV-2 enters into lymphoma cells by an unknown mechanism and upon cellular 
entry, it will use some of its proteins to initiate cell-cycle arrest or apoptosis by interacting 
with cell-cycle machinery components. Gordon et al. [43] and Chen et al., [44] reported 
that the M  and ORF3a proteins of SARS-CoV-2 interact with the gamma-tubulin com-
plex components GCP2, GCP3, and TUBG1. The binding of GCP2-TUBG1, GCP3–TUBG1, 
and GCP2–GCP3 is essential for the microtubule nucleation process [41,42]. Our analysis 



Viruses 2021, 13, 1927 19 of 26 
 

 

suggests that the M protein may bind to GCP2 at its GCP3 binding site (Figure 3B), and 
the ORF3a protein may bind to GCP3 at its GCP2 binding residues (Table 3, Figure 3C); 
thus, both the M and ORF3a proteins can potentially render the GCP2 –GCP3 lateral bind-
ing. Further, the M and ORF3a proteins may also bind to GCP3 at its TUBG1 binding site 
(Table 3, Figure 4A–H). Additionally, we also predicted that the M and ORF3a proteins 
might bind to TUBG1, blocking its interaction with GCP3 (Table 3, Figure 5A–H). There-
fore, if the M and ORF3a proteins are involved in such interactions, the microtubule nu-
cleation process will stop leading to cell-cycle arrest. 

Some coronavirus infections induce apoptosis in host cells that may be required for  
viral replication and propagation in respective hosts [72]. SARS-CoV and SARS-CoV-2 
induce apoptosis through distinct mechanisms [73]. SARS-CoV uses the 7a protein to in-
duce apoptosis, activating the p38 MAPK pathway [74]. SARS-CoV also uses the S, M, and 
N proteins for induction of apoptosis [75,76]. Recently, the SARS-CoV-2 ORF3a protein 
was reported to induce apoptosis via the release of cytochrome C [77]. As per our predic-
tion, the ORF3a protein may also be involved in cell-cycle arrest at a very early stage, 
leading to apoptosis or cell death (Table 3, Figures 4D–F and 5E–H). 

PD-1 immune-checkpoint-blocking mAbs such as pembrolizumab and nivolumab 
are used in cHL [21,22] and FL [20] treatment to induce apoptosis. Although we do not 
know if the reported cHL and FL cases [2,3] are PD-1 positive, we analyzed whether the 
SARS-CoV-2 Spike protein may act like pembrolizumab and nivolumab, which bind to 
PD-1 to block the access of PDL-1 and PDL-2 and thus downregulate PD-1 signaling and 
induce apoptosis. Our analysis observed that the Spike-RBD potentially interacts with PD-
1 at the binding sites of these two mAbs, although only a few overlapping residues of PD-
1 that interact with pembrolizumab/nivolumab are found to interact with the Spike-RBD 
(Table 4, Figure 6E,F). Therefore, we suggest further validating whether the SARS-CoV-2 
Spike protein can also induce apoptosis through negative regulation of PD-1 mediated 
signaling as per the results of our second hypothesis. 

Our previous report predicted that the SARS-CoV-2 infection pathway is involved in 
crosstalk with other viral pathways, including EBV [47]. Co-infection of EBV in COVID-
19 patients is not uncommon, and in COVID-19 patients, reactivation of EBV has been 
reported, which may be associated with disease severity and other symptoms of long 
COVID-19 [78–81]. Additionally, patients with lymphoproliferative disorders showing 
immunodeficiency and post-transplantation patients subjected to immunosuppression, 
the synergistic action of EBV and SARS-CoV-2 may increase the fatality rate [82]. The cHL 
patient of Challenor and Tucker was EBV positive [2], and the LMP-1 of EBV is the main 
oncogenic protein of EBV that activates oncogenic signaling through activation of NF-κB, 
JAK/STAT, and PI3K/AKT pathways through its cytoplasmic TRAFs and TRADD binding 
motifs [23,26]. Contrary to the reported potential synergistic association between EBV and 
SARS-CoV-2 [78–82], in our analysis (as per our third hypothesis), we found that the 
3CLpro/Mpro, NSP7, NSP10, and S (Table 4, Figure 6A–D) proteins of SARS-CoV-2 may in-
teract at the TRADD binding sites of LMP-1 thus blocking the access of TRADDs to LMP-
1, and this interaction may inhibit the LMP-1-mediated NF-kB oncogenic signaling to in-
duce remission. However, further investigations are required to validate these interac-
tions and their outcomes in lymphoma remission. 

5. Conclusions 
This study has explored the possible molecular mechanisms behind the rare phenom-

enon of lymphoma remission upon SARS-CoV-2 infection. We have focused on a specific 
anti-tumor immune response caused by SARS-CoV-2. We are currently planning to con-
duct in vitro experimental validations of our results and if our proposed mechanism is 
proven right, SARS-CoV-2 may be engineered for effective therapeutic interventions 
against certain lymphomas and other proliferative disorders. 



Viruses 2021, 13, 1927 20 of 26 
 

 

Supplementary Materials: The following are available online at www.mdpi.com/arti-
cle/10.3390/v13101927/s1. Figure S1: The Ramachandran plot of the refined CD30 structure. Figure 
S2: The Ramachandran plot of the refined CD15 structure. Figure S3: The Ramachandran plot of the 
refined SARS-CoV-2 M protein structure. Figure S4: Refined 3D model EBV_LMP1. Figure S5: The 
Ramachandran plot of the refined 3D model EBV LMP1 structure. Figure S6: The Ramachandran 
plot of the RaptorX 3D model EBV LMP1 structure. Figure S7: 2D representation of Spike-RBD in-
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residues between GCP3 (AtGCP3 residues that interact with TUBG1) (Chain B) and M Protein 
(Chain A), Complex 5, provided by the LIGPLOT v.2.2 software. Figure S42: 2D representation of 
interacting residues between GCP2 (At GCP2 residues that interact with TUBG1) (Chain C) and 
Orf3a (Chain A), Complex 3, provided by the LIGPLOT v.2.2 software. Figure S43: 2D representa-
tion of interacting residues between GCP2 (At GCP2 residues that interact with TUBG1) (Chain C) 
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residues between LMP-1 (Chain Y) and 3CLpro/Mpro (Chain A) complex 1, provided by the LIG-
PLOT v.2.2 software. Figure S57: 2D representation of interacting residues between LMP-1 (Chain 
Y) and 3CLpro/Mpro (Chain A) complex 9, provided by the LIGPLOT v.2.2 software. Figure S58: 
2D representation of interacting residues between LMP-1 (Chain Y) and 3CLpro/Mpro (Chain A) 
complex 10, provided by the LIGPLOT v.2.2 software. Figure S59: 2D representation of interacting 
residues between LMP-1 (Chain Y) and nsp7 (Chain A) complex 6, provided by the LIGPLOT v.2.2 
software. Figure S60: 2D representation of interacting residues between LMP-1 (Chain Y) and nsp7 
(Chain A) complex 7, provided by the LIGPLOT v.2.2 software. Figure S61: 2D representation of 
interacting residues between LMP-1 (Chain Y) and nsp7 (Chain A) complex 8, provided by the LIG-
PLOT v.2.2 software. Figure S62: 2D representation of interacting residues between LMP-1 (Chain 
Y) and nsp10 (Chain B) complex 2, provided by the LIGPLOT v.2.2 software. Figure S63: 2D repre-
sentation of interacting residues between LMP-1 (Chain Y) and nsp10 (Chain B) complex 8, provided 
by the LIGPLOT v.2.2 software. Figure S64: 2D representation of interacting residues between LMP-
1 (Chain Y) and CoV-2 Spike (Chain B) complex 6, provided by the LIGPLOT v.2.2 software. Figure 
S65: 2D representation of interacting residues between LMP-1 (Chain Y) and CoV-2 Spike (Chain B) 
complex 7, provided by the LIGPLOT v.2.2 software. Figure S66: 2D representation of interacting 
residues between LMP-1 (Chain Y) and CoV-2 Spike (Chain B) complex 8, provided by the LIGPLOT 
v.2.2 software. Figure S67: 2D representation of interacting residues between PD-1 (Chain G) and 
CoV-2 Spike (Chain B) complex 2, provided by the LIGPLOT v.2.2 software. Figure S68: 2D repre-
sentation of interacting residues between PD-1 (Chain G) and CoV-2 Spike (Chain B) complex 7, 
providedby the LIGPLOT v.2.2 software. Figure S69: 2D representation of interacting residues be-
tween PD-1 (Chain G) and CoV-2 Spike (Chain B) complex 8, provided by the LIGPLOT v.2.2 soft-
ware. Table S1: Protein structures used in this analysis. Table S2: Docking analysis of human CDs 
and SARS-CoV-2 Spike-RBD. Table S3: Docking analysis of M with GCP2 at its GCP3 binding site, 
M with GCP3 at its GCP2 binding site, M with TUBG1 at its GCP2 and GCP3 binding sites. Table 
S4: Docking analysis of Orf3a with GCP2 at its GCP3 binding site, Orf3a with GCP3 at its GCP2 
binding site, Orf3a with TUBG1 at its GCP2 and GCP3 binding sites. Table S5: Analysis of SARS-
CoV-2 proteome wide docking with the TRAFs and TRADD interacting motifs of LMP-1. Table S6: 
Docking analysis of Spike-RBD with the pembrolizumab and nivolumab interacting sites of human 
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PD-1. Supplementary File S1: Intrinsic disorder prediction of human CD15/FUT4, human 
CD30/TNFRSF8, SARS-CoV-2 membrane (M) protein, and Epstein–Barr virus LMP-1 proteins.  
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Abbreviations 

hACE2 Human Angiotensin-converting enzyme 2 
BSAP  B-cell-specific transcription factor 
CD Cluster of differentiation 
CD15 CD antigen 15 (alpha-(1,3)-fucosyltransferase 4, FUT4) 
CD20 CD antigen 20 (B-lymphocyte antigen CD20) 
CD27 CD antigen 27 (Tumor necrosis factor receptor superfamily member 7, TNFRSF7) 
CD30 CD antigen 30 (tumor necrosis factor receptor superfamily member 8, TNFRSF8) 
CD40 CD antigen 40 (Tumor necrosis factor receptor superfamily member 5, TNFRSF5) 
CD45 CD antigen 45 (Receptor-type tyrosine-protein phosphatase C, PTPRC) 
CD80 CD antigen 80 (T-lymphocyte activation antigen CD80) 
CD86 CD antigen 86 (T-lymphocyte activation antigen CD86) 

CD95 
CD antigen 95 (Tumor necrosis factor receptor superfamily member 6, TNFRSF6, or 
Apoptosis-mediating surface antigen FAS) 

CD125 CD antigen 125 (Cytotoxic T-lymphocyte protein 4, CTLA4) 
cHL  Classical Hodgkin lymphoma 
COVID-19 Coronavirus Disease 2019 
CTLA4 T-lymphocyte associated protein 4 (CD antigen 125, CD125) 
DLBCL Diffuse large B-cell lymphoma 
EBV Epstein–Barr virus 
FL  Follicular lymphoma 
FUT4  Alpha-(1,3)-fucosyltransferase 4 (CD antigen 15, CD15) 
GCP2 Gamma-tubulin complex component 2 
GCP3 Gamma-tubulin complex component 3 
GGT1 Gamma-glutamyl transferase 1 
HRS  Hodgkin or Reed–Sternberg cells 
IRF4  Interferon regulatory factor 4 
JAK Janus kinase 1 
mABs  Monoclonal antibodies 
LMP-1 Latent oncogenic membrane protein 1 
M  Membrane protein of SARS-CoV-2 
MMAE  Monomethyl auristatin E 
MS4A1 Membrane-spanning 4-domains subfamily A member 1 
MT  Microtubule 
PAX5 Paired box protein Pax-5 
MUM1 Multiple myeloma oncogene 1 
PD-1 Programmed cell death-1 
PD-L1 Programmed cell death 1 ligand 1 
PD-L2 Programmed cell death 1 ligand 2 
PTPRC  Receptor-type tyrosine-protein phosphatase C (CD antigen 45, CD45) 
SARS-CoV-2 Severe acute respiratory coronavirus 2 
RBD  Receptor binding domain of spike protein 
S  Spike protein of SARS-CoV-2 
STAT  Signal transducer and activator of transcription 
TNFRSF5 Tumor necrosis factor receptor superfamily member 5 (CD antigen 40, CD40) 
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TNFRSF6 Tumor necrosis factor receptor superfamily member 6 (CD antigen 95, CD95) 
TNFRSF7 Tumor necrosis factor receptor superfamily member 7 (CD antigen 27, CD27) 
TNFRSF8 Tumor necrosis factor receptor superfamily member 8 (CD antigen 30) 
TRAFs  Tumor necrosis factor receptor-associated factors 
TRADD  Tumor necrosis factor receptor type 1-associated DEATH domain protein 
TUBG1  Tubulin gamma-1 chain 
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