4 research outputs found

    Advancing Our Understanding of Martian Proton Aurora through a Coordinated Multi-Model Comparison Campaign

    Get PDF
    Proton aurora are the most commonly observed yet least studied type of aurora at Mars. In order to better understand the physics and driving processes of Martian proton aurora, we undertake a multi-model comparison campaign. We compare results from four different proton/hydrogen precipitation models with unique abilities to represent Martian proton aurora: Jolitz model (3-D Monte Carlo), Kallio model (3-D Monte Carlo), Bisikalo/Shematovich et al. model (1-D kinetic Monte Carlo), and Gronoff et al. model (1-D kinetic). This campaign is divided into two steps: an inter-model comparison and a data-model comparison. The inter-model comparison entails modeling five different representative cases using similar constraints in order to better understand the capabilities and limitations of each of the models. Through this step we find that the two primary variables affecting proton aurora are the incident solar wind particle flux and velocity. In the data-model comparison, we assess the robustness of each model based on its ability to reproduce a MAVEN/IUVS proton aurora observation. All models are able to effectively simulate the data. Variations in modeled intensity and peak altitude can be attributed to differences in model capabilities/solving techniques and input assumptions (e.g., cross sections, 3-D versus 1-D solvers, and implementation of the relevant physics and processes). The good match between the observations and multiple models gives a measure of confidence that the appropriate physical processes and their associated parameters have been correctly identified and provides insight into the key physics that should be incorporated in future models

    Atmospheric Escape Processes and Planetary Atmospheric Evolution

    Full text link
    The habitability of the surface of any planet is determined by a complex evolution of its interior, surface, and atmosphere. The electromagnetic and particle radiation of stars drive thermal, chemical and physical alteration of planetary atmospheres, including escape. Many known extrasolar planets experience vastly different stellar environments than those in our Solar system: it is crucial to understand the broad range of processes that lead to atmospheric escape and evolution under a wide range of conditions if we are to assess the habitability of worlds around other stars. One problem encountered between the planetary and the astrophysics communities is a lack of common language for describing escape processes. Each community has customary approximations that may be questioned by the other, such as the hypothesis of H-dominated thermosphere for astrophysicists, or the Sun-like nature of the stars for planetary scientists. Since exoplanets are becoming one of the main targets for the detection of life, a common set of definitions and hypotheses are required. We review the different escape mechanisms proposed for the evolution of planetary and exoplanetary atmospheres. We propose a common definition for the different escape mechanisms, and we show the important parameters to take into account when evaluating the escape at a planet in time. We show that the paradigm of the magnetic field as an atmospheric shield should be changed and that recent work on the history of Xenon in Earth's atmosphere gives an elegant explanation to its enrichment in heavier isotopes: the so-called Xenon paradox

    Cold and warm electrons at comet 67P/Churyumov-Gerasimenko

    No full text
    Context. Strong electron cooling on the neutral gas in cometary comae has been predicted for a long time, but actual measurements of low electron temperature are scarce. Aims. Our aim is to demonstrate the existence of cold electrons in the inner coma of comet 67P/Churyumov-Gerasimenko and show filamentation of this plasma. Methods. In situ measurements of plasma density, electron temperature and spacecraft potential were carried out by the Rosetta Langmuir probe instrument, LAP. We also performed analytical modelling of the expanding two-temperature electron gas. Results. LAP data acquired within a few hundred km from the nucleus are dominated by a warm component with electron temperature typically 5–10 eV at all heliocentric distances covered (1.25 to 3.83 AU). A cold component, with temperature no higher than about 0.1 eV, appears in the data as short (few to few tens of seconds) pulses of high probe current, indicating local enhancement of plasma density as well as a decrease in electron temperature. These pulses first appeared around 3 AU and were seen for longer periods close to perihelion. The general pattern of pulse appearance follows that of neutral gas and plasma density. We have not identified any periods with only cold electrons present. The electron flux to Rosetta was always dominated by higher energies, driving the spacecraft potential to order − 10 V. Conclusions. The warm (5–10 eV) electron population observed throughout the mission is interpreted as electrons retaining the energy they obtained when released in the ionisation process. The sometimes observed cold populations with electron temperatures below 0.1 eV verify collisional cooling in the coma. The cold electrons were only observed together with the warm population. The general appearance of the cold population appears to be consistent with a Haser-like model, implicitly supporting also the coupling of ions to the neutral gas. The expanding cold plasma is unstable, forming filaments that we observe as pulses

    The Plasma Environment of Comet 67P/Churyumov-Gerasimenko

    Get PDF
    The environment of a comet is a fascinating and unique laboratory to study plasma processes and the formation of structures such as shocks and discontinuities from electron scales to ion scales and above. The European Space Agency’s Rosetta mission collected data for more than two years, from the rendezvous with comet 67P/Churyumov-Gerasimenko in August 2014 until the final touch-down of the spacecraft end of September 2016. This escort phase spanned a large arc of the comet’s orbit around the Sun, including its perihelion and corresponding to heliocentric distances between 3.8 AU and 1.24 AU. The length of the active mission together with this span in heliocentric and cometocentric distances make the Rosetta data set unique and much richer than sets obtained with previous cometary probes. Here, we review the results from the Rosetta mission that pertain to the plasma environment. We detail all known sources and losses of the plasma and typical processes within it. The findings from in-situ plasma measurements are complemented by remote observations of emissions from the plasma. Overviews of the methods and instruments used in the study are given as well as a short review of the Rosetta mission. The long duration of the Rosetta mission provides the opportunity to better understand how the importance of these processes changes depending on parameters like the outgassing rate and the solar wind conditions. We discuss how the shape and existence of large scale structures depend on these parameters and how the plasma within different regions of the plasma environment can be characterised. We end with a non-exhaustive list of still open questions, as well as suggestions on how to answer them in the future
    corecore