7,794 research outputs found

    Abnormal negative feedback processing in first episode schizophrenia: evidence from an oculomotor rule switching task

    Get PDF
    Background. Previous studies have shown that patients with schizophrenia are impaired on executive tasks, where positive and negative feedbacks are used to update task rules or switch attention. However, research to date using saccadic tasks has not revealed clear deficits in task switching in these patients. The present study used an oculomotor ‘ rule switching ’ task to investigate the use of negative feedback when switching between task rules in people with schizophrenia. Method. A total of 50 patients with first episode schizophrenia and 25 healthy controls performed a task in which the association between a centrally presented visual cue and the direction of a saccade could change from trial to trial. Rule changes were heralded by an unexpected negative feedback, indicating that the cue-response mapping had reversed. Results. Schizophrenia patients were found to make increased errors following a rule switch, but these were almost entirely the result of executing saccades away from the location at which the negative feedback had been presented on the preceding trial. This impairment in negative feedback processing was independent of IQ. Conclusions. The results not only confirm the existence of a basic deficit in stimulus–response rule switching in schizophrenia, but also suggest that this arises from aberrant processing of response outcomes, resulting in a failure to appropriately update rules. The findings are discussed in the context of neurological and pharmacological abnormalities in the conditions that may disrupt prediction error signalling in schizophrenia

    Experiments to investigate particulate materials in reduced gravity fields

    Get PDF
    Study investigates agglomeration and macroscopic behavior in reduced gravity fields of particles of known properties by measuring and correlating thermal and acoustical properties of particulate materials. Experiment evaluations provide a basis for a particle behavior theory and measure bulk properties of particulate materials in reduced gravity

    The Ultimate Halo Mass in a LCDM Universe

    Full text link
    In the far future of an accelerating LCDM cosmology, the cosmic web of large-scale structure consists of a set of increasingly isolated halos in dynamical equilibrium. We examine the approach of collisionless dark matter to hydrostatic equilibrium using a large N-body simulation evolved to scale factor a = 100, well beyond the vacuum--matter equality epoch, a_eq ~ 0.75, and 53/h Gyr into the future for a concordance model universe (Omega_m ~ 0.3, Omega_Lambda ~ 0.7). The radial phase-space structure of halos -- characterized at a < a_eq by a pair of zero-velocity surfaces that bracket a dynamically active accretion region -- simplifies at a > 10 a_eq when these surfaces merge to create a single zero-velocity surface, clearly defining the halo outer boundary, rhalo, and its enclosed mass, mhalo. This boundary approaches a fixed physical size encompassing a mean interior density ~ 5 times the critical density, similar to the turnaround value in a classical Einstein-deSitter model. We relate mhalo to other scales currently used to define halo mass (m200, mvir, m180b) and find that m200 is approximately half of the total asymptotic cluster mass, while m180b follows the evolution of the inner zero velocity surface for a < 2 but becomes much larger than the total bound mass for a > 3. The radial density profile of all bound halo material is well fit by a truncated Hernquist profile. An NFW profile provides a somewhat better fit interior to r200 but is much too shallow in the range r200 < r < rhalo.Comment: 5 pages, 3 figures, submitted to MNRAS letter

    Financial capability and functional financial literacy in young adults with developmental language disorder

    Get PDF
    Background: Financial capability is an essential feature of the organisation of one’s personal life and engagement with society. Very little is known of how adequately individuals with developmental language disorder (DLD) handle financial matters. It is known that language difficulties place them at a disadvantage in many aspects of their development and during their transition into adulthood, leading to the possibility that financial issues may prove burdensome for them. This study examines the financial capability and functional financial literacy of young adults with DLD and compares them to those of age matched peers (AMPs). We tested the expectation that those with DLD would find financial management more challenging than would their peers, and that they would need to seek greater support from family members or other people. Methods: Participants completed a detailed individual interview, which included items drawn from the British Household Panel Survey and additional measures of financial capability, functional financial literacy and of perceived support. Nonverbal IQ, language, reading and numeracy measures were also collected. Results: Compared to typically developing AMPs, young people with DLD report less extensive engagement with financial products and lower competence in functional financial literacy. A considerably higher proportion of those with DLD (48% vs 16% of AMPs) report that they draw on support, primarily from parents, in various financial tasks, including paying bills, choosing financial products, and taking loans from family or friends. Conclusions: This is the first study to consider the financial capability skills and functional financial literacy of young adults with DLD. We provide novel evidence that some young adults with DLD lack functional financial skills and require support to successfully manage their finances. This has policy implications that relate not only to engaging affected individuals in discussions about financial management but also to wider familial support

    Clinically feasible brain morphometric similarity network construction approaches with restricted magnetic resonance imaging acquisitions

    Get PDF
    Morphometric similarity networks (MSNs) estimate organization of the cortex as a biologically meaningful set of similarities between anatomical features at the macro-and microstructural level, derived from multiple structural MRI (sMRI) sequences. These networks are clinically relevant, predicting 40% variance in IQ. However, the sequences required (T1w, T2w, DWI) to produce these networks are longer acquisitions, less feasible in some populations. Thus, estimating MSNs using features from T1w sMRI is attractive to clinical and developmental neuroscience. We studied whether reduced-feature approaches approximate the original MSN model as a potential tool to investigate brain structure. In a large, homogenous dataset of healthy young adults (from the Human Connectome Project, HCP), we extended previous investigations of reduced-feature MSNs by comparing not only T1w-derived networks, but also additional MSNs generated with fewer MR sequences, to their full acquisition counterparts. We produce MSNs that are highly similar at the edge level to those generated with multimodal imaging; however, the nodal topology of the networks differed. These networks had limited predictive validity of generalized cognitive ability. Overall, when multimodal imaging is not available or appropriate, T1w-restricted MSN construction is feasible, provides an appropriate estimate of the MSN, and could be a useful approach to examine outcomes in future studies

    Impaired conscious and preserved unconscious inhibitory processing in recent onset schizophrenia

    Get PDF
    Background. Impairments in inhibitory function have been found in studies of cognition in schizophrenia. These have been linked to a failure to adequately maintain the task demands in working memory. As response inhibition is known to occur in both voluntary and involuntary processes, an important question is whether both aspects of response inhibition are specifically impaired in people with schizophrenia. Method. The subjects were 33 patients presenting with a first episode of psychosis (27 with schizophrenia and six with schizo-affective disorder) and 24 healthy controls. We administered two motor response tasks: voluntary response inhibition was indexed by the stop-signal task and involuntary response inhibition by the masked priming task. We also administered neuropsychological measures of IQ and executive function to explore their associations with response inhibition. Results. Patients with schizophrenia compared to healthy controls showed significantly increased duration of the voluntary response inhibition process, as indexed by the stop-signal reaction time (SSRT). By contrast, there were no group differences on the pattern of priming on the masked priming task, indicative of intact involuntary response inhibition. Neuropsychological measures revealed that voluntary response inhibition is not necessarily dependent on working memory. Conclusions. These data provide evidence for a specific impairment of voluntary response inhibition in schizophrenia

    The Mean and Scatter of the Velocity Dispersion-Optical Richness Relation for maxBCG Galaxy Clusters

    Get PDF
    The distribution of galaxies in position and velocity around the centers of galaxy clusters encodes important information about cluster mass and structure. Using the maxBCG galaxy cluster catalog identified from imaging data obtained in the Sloan Digital Sky Survey, we study the BCG-galaxy velocity correlation function. By modeling its non-Gaussianity, we measure the mean and scatter in velocity dispersion at fixed richness. The mean velocity dispersion increases from 202+/-10 km/s for small groups to more than 854+/-102 km/s for large clusters. We show the scatter to be at most 40.5+/-3.5%, declining to 14.9+/-9.4% in the richest bins. We test our methods in the C4 cluster catalog, a spectroscopic cluster catalog produced from the Sloan Digital Sky Survey DR2 spectroscopic sample, and in mock galaxy catalogs constructed from N-body simulations. Our methods are robust, measuring the scatter to well within one-sigma of the true value, and the mean to within 10%, in the mock catalogs. By convolving the scatter in velocity dispersion at fixed richness with the observed richness space density function, we measure the velocity dispersion function of the maxBCG galaxy clusters. Although velocity dispersion and richness do not form a true mass-observable relation, the relationship between velocity dispersion and mass is theoretically well characterized and has low scatter. Thus our results provide a key link between theory and observations up to the velocity bias between dark matter and galaxies.Comment: 25 pages, 15 figures, 2 tables, published in Ap
    corecore