573 research outputs found

    Oakleaf: an S locus-linked mutation of Primula vulgaris that affects leaf and flower development

    Get PDF
    •In Primula vulgaris outcrossing is promoted through reciprocal herkogamy with insect-mediated cross-pollination between pin and thrum form flowers. Development of heteromorphic flowers is coordinated by genes at the S locus. To underpin construction of a genetic map facilitating isolation of these S locus genes, we have characterised Oakleaf, a novel S locus-linked mutant phenotype. •We combine phenotypic observation of flower and leaf development, with classical genetic analysis and next-generation sequencing to address the molecular basis of Oakleaf. •Oakleaf is a dominant mutation that affects both leaf and flower development; plants produce distinctive lobed leaves, with occasional ectopic meristems on the veins. This phenotype is reminiscent of overexpression of Class I KNOX-homeodomain transcription factors. We describe the structure and expression of all eight P. vulgaris PvKNOX genes in both wild-type and Oakleaf plants, and present comparative transcriptome analysis of leaves and flowers from Oakleaf and wild-type plants. •Oakleaf provides a new phenotypic marker for genetic analysis of the Primula S locus. We show that none of the Class I PvKNOX genes are strongly upregulated in Oakleaf leaves and flowers, and identify cohorts of 507 upregulated and 314 downregulated genes in the Oakleaf mutant

    NASA advanced aeronautics design solar powered remotely piloted vehicle

    Get PDF
    Environmental problems such as the depletion of the ozone layer and air pollution demand a change in traditional means of propulsion that is sensitive to the ecology. Solar powered propulsion is a favorable alternative that is both ecologically harmless as well as cost effective. Integration of solar energy into designs ranging from futuristic vehicles to heating is beneficial to society. The design and construction of a Multi-Purpose Remotely Piloted Vehicle (MPRPV) seeks to verify the feasibility of utilizing solar propulsion as a primary fuel source. This task has been a year long effort by a group of ten students, divided into five teams, each dealing with different aspects of the design. The aircraft was designed to take-off, climb to the design altitude, fly in a sustained figure-eight flight path, and cruise for approximately one hour. This mission requires flight at Reynolds numbers between 150,000 and 200,000 and demands special considerations in the aerodynamic design in order to achieve flight in this regime. Optimal performance requires a light weight configuration with both structural integrity and maximum power availability. The structure design and choice of solar cells for the propulsion was governed by the weight, efficiency, and cost considerations. The final design is a MPRPV weighting 35 N which cruises 7 m/s at the design altitude of 50 m. The configuration includes a wing composed of balsa and foam NACA 6409 airfoil sections and carbon fiber spars, a tail of similar construction, and a truss structure fuselage. The propulsion system consists of 98 10 percent efficient solar cells donated by Mobil Solar, a NiCad battery for energy storage, and a folding propeller regulated by a lightweight and efficient control system. The airfoils and propeller chosen for the design were research and tested during the design process

    Attenuation of Traumatic Brain Injury-Induced Cognitive Impairment in Mice by Targeting Increased Cytokine Levels with a Small Molecule Experimental Therapeutic

    Get PDF
    BACKGROUND: Evidence from clinical studies and preclinical animal models suggests that proinflammatory cytokine overproduction is a potential driving force for pathology progression in traumatic brain injury (TBI). This raises the possibility that selective targeting of the overactive cytokine response, a component of the neuroinflammation that contributes to neuronal dysfunction, may be a useful therapeutic approach. MW151 is a CNS-penetrant, small molecule experimental therapeutic that selectively restores injury- or disease-induced overproduction of proinflammatory cytokines towards homeostasis. We previously reported that MW151 administered post-injury (p.i.) is efficacious in a closed head injury (CHI) model of diffuse TBI in mice. Here we test dose dependence of MW151 to suppress the target mechanism (proinflammatory cytokine up-regulation), and explore the therapeutic window for MW151 efficacy. METHODS: We examined suppression of the acute cytokine surge when MW151 was administered at different times post-injury and the dose-dependence of cytokine suppression. We also tested a more prolonged treatment with MW151 over the first 7 days post-injury and measured the effects on cognitive impairment and glial activation. RESULTS: MW151 administered up to 6 h post-injury suppressed the acute cytokine surge, in a dose-dependent manner. Administration of MW151 over the first 7 days post-injury rescues the CHI-induced cognitive impairment and reduces glial activation in the focus area of the CHI. CONCLUSIONS: Our results identify a clinically relevant time window post-CHI during which MW151 effectively restores cytokine production back towards normal, with a resultant attenuation of downstream cognitive impairment

    Trial Registration and Declaration of Registration by Authors of Randomized Controlled Trials

    Get PDF
    Background: Trial registration was introduced to reduce research bias by promoting trial transparency and accountability. We aimed to evaluate the frequency of, and factors associated with, trial registration and declaration of trial registration. Methods: We selected all randomized controlled trials in kidney transplantation published between October 2005 and December 2010 and determined whether a trial was registered and whether a trial declared their registration in subsequent trial reports. Results: Of 307 eligible trials identified, 24% (74/307) were registered, and of those, 59% (44/74) contained trial registration details within at least one trial report. Trial registration was more likely for trials published more than once, in later years or reported in journals that followed the International Committee of Medical Journal Editors guidelines. Trial registration was less likely for trials that did not declare their funding sources. Registered trials were more likely to declare registration details in related reports if published in later years or in a journal that followed International Committee of Medical Journal Editors guidelines. Trials that did not declare their funding sources were less likely to declare registration details. Conclusions: Although still suboptimal, the situation is improving over time, with both trial registration and declaration of registration details more likely in later years

    CRLX101 nanoparticles localize in human tumors and not in adjacent, nonneoplastic tissue after intravenous dosing

    Get PDF
    Nanoparticle-based therapeutics are being used to treat patients with solid tumors. Whereas nanoparticles have been shown to preferentially accumulate in solid tumors of animal models, there is little evidence to prove that intact nanoparticles localize to solid tumors of humans when systemically administered. Here, tumor and adjacent, nonneoplastic tissue biopsies are obtained through endoscopic capture from patients with gastric, gastroesophageal, or esophageal cancer who are administered the nanoparticle CRLX101. Both the pre- and postdosing tissue samples adjacent to tumors show no definitive evidence of either the nanoparticle or its drug payload (camptothecin, CPT) contained within the nanoparticle. Similar results are obtained from the predosing tumor samples. However, in nine of nine patients that were evaluated, CPT is detected in the tumor tissue collected 24–48 h after CRLX101 administration. For five of these patients, evidence of the intact deposition of CRLX101 nanoparticles in the tumor tissue is obtained. Indications of CPT pharmacodynamics from tumor biomarkers such as carbonic anhydrase IX and topoisomerase I by immunohistochemistry show clear evidence of biological activity from the delivered CPT in the posttreatment tumors

    Nitrate removal in stream ecosystems measured by 15N addition experiments: Total uptake

    Get PDF
    We measured uptake length of 15NO3− in 72 streams in eight regions across the United States and Puerto Rico to develop quantitative predictive models on controls of NO3− uptake length. As part of the Lotic Intersite Nitrogen eXperiment II project, we chose nine streams in each region corresponding to natural (reference), suburban-urban, and agricultural land uses. Study streams spanned a range of human land use to maximize variation in NO3− concentration, geomorphology, and metabolism. We tested a causal model predicting controls on NO3− uptake length using structural equation modeling. The model included concomitant measurements of ecosystem metabolism, hydraulic parameters, and nitrogen concentration. We compared this structural equation model to multiple regression models which included additional biotic, catchment, and riparian variables. The structural equation model explained 79% of the variation in log uptake length (SWtot). Uptake length increased with specific discharge (Q/w) and increasing NO3− concentrations, showing a loss in removal efficiency in streams with high NO3− concentration. Uptake lengths shortened with increasing gross primary production, suggesting autotrophic assimilation dominated NO3− removal. The fraction of catchment area as agriculture and suburban-urban land use weakly predicted NO3− uptake in bivariate regression, and did improve prediction in a set of multiple regression models. Adding land use to the structural equation model showed that land use indirectly affected NO3− uptake lengths via directly increasing both gross primary production and NO3− concentration. Gross primary production shortened SWtot, while increasing NO3− lengthened SWtot resulting in no net effect of land use on NO3− removal

    Antiplatelet agents for chronic kidney disease

    Get PDF
    To evaluate the benefits and harms of antiplatelet therapy in patients with any form of kidney disease, including patients with CKD not receiving renal replacement therapy (RRT), patients receiving any form of dialysis, and kidney transplant recipients

    Quasi-Periodic Occultation by a Precessing Accretion Disk and Other Variabilities of SMC X-1

    Full text link
    We have investigated the variability of the binary X-ray pulsar, SMC X-1, in data from several X-ray observatories. We confirm the ~60-day cyclic variation of the X-ray flux in the long-term monitoring data from the RXTE and CGRO observatories. X-ray light curves and spectra from the ROSAT, Ginga, and ASCA observatories show that the uneclipsed flux varies by as much as a factor of twenty between a high-flux state when 0.71 second pulses are present and a low-flux state when pulses are absent. In contrast, during eclipses when the X-rays consist of radiation scattered from circumsource matter, the fluxes and spectra in the high and low states are approximately the same. These observations prove that the low state of SMC X-1 is not caused by a reduction in the intrinsic luminosity of the source, or a spectral redistribution thereof, but rather by a quasi-periodic blockage of the line of sight, most likely by a precessing tilted accretion disk. In each of two observations in the midst of low states a brief increase in the X-ray flux and reappearance of 0.71 second pulses occurred near orbital phase 0.2. These brief increases result from an opening of the line of sight to the pulsar that may be caused by wobble in the precessing accretion disk. The records of spin up of the neutron star and decay of the binary orbit are extended during 1991-1996 by pulse-timing analysis of ROSAT, ASCA, and RXTE PCA data. The pulse profiles in various energy ranges from 0.1 to >21 keV are well represented as a combination of a pencil beam and a fan beam. Finally, there is a marked difference between the power spectra of random fluctuations in the high-state data from the RXTE PCA below and above 3.4 keV. Deviation from the fitted power law around 0.06 Hz may be QPO.Comment: Accepted to ApJ. 33 pages including 11 figure

    The Lotic Intersite Nitrogen Experiments: an example of successful ecological research collaboration

    Get PDF
    Collaboration is an essential skill for modern ecologists because it brings together diverse expertise, viewpoints, and study systems. The Lotic Intersite Nitrogen eXperiments (LINX I and II), a 17-y research endeavor involving scores of early- to late-career stream ecologists, is an example of the benefits, challenges, and approaches of successful collaborative research in ecology. The scientific success of LINX reflected tangible attributes including clear scientific goals (hypothesis-driven research), coordinated research methods, a team of cooperative scientists, excellent leadership, extensive communication, and a philosophy of respect for input from all collaborators. Intangible aspects of the collaboration included camaraderie and strong team chemistry. LINX further benefited from being part of a discipline in which collaboration is a tradition, clear data-sharing and authorship guidelines, an approach that melded field experiments and modeling, and a shared collaborative goal in the form of a universal commitment to see the project and resulting data products through to completion
    • …
    corecore