10,887 research outputs found
New functional redundancy approaches for attitude control thruster systems
Functional redundancy safeguards for inert gas attitude control thruster system
Using the LANDSAT data collection system for field geophysics: Operations in the British Virgin Islands
This particular application was to vertical geodesy by tide gauge and tiltmeter on a small desert island in the British Virgin Islands. The performance of the LANDSAT system under potentially marginal circumstances was found to be excellent
Electrochemical sintering process for producing electrodes from cadmium felt and a nickel or silver grid
Electrochemical sintering process produces cadmium felt electrodes. Two pieces of cadmium felt are sandwiched around a nickel screen or silver expanded metal grid, held together by mold compression, and electrochemically sinitered by being put through several charge and discharge cycles at low current density
Generation of spin-motion entanglement in a trapped ion using long-wavelength radiation
Applying a magnetic-field gradient to a trapped ion allows long-wavelength radiation to produce a mechanical force on the ion's motion when internal transitions are driven. We demonstrate such a coupling using a single trapped Yb+171 ion and use it to produce entanglement between the spin and motional state, an essential step toward using such a field gradient to implement multiqubit operations
Ground-state cooling of a trapped ion Using long-wavelength radiation
We demonstrate ground-state cooling of a trapped ion using radio-frequency (rf) radiation. This is a powerful tool for the implementation of quantum operations, where rf or microwave radiation instead of lasers is used for motional quantum state engineering. We measure a mean phonon number of n¯=0.13(4) after sideband cooling, corresponding to a ground-state occupation probability of 88(7)%. After preparing in the vibrational ground state, we demonstrate motional state engineering by driving Rabi oscillations between the |n=0⟩ and |n=1⟩ Fock states. We also use the ability to ground-state cool to accurately measure the motional heating rate and report a reduction by almost 2 orders of magnitude compared with our previously measured result, which we attribute to carefully eliminating sources of electrical noise in the system
Role of social environment and social clustering in spread of opinions in co-evolving networks
Taking a pragmatic approach to the processes involved in the phenomena of
collective opinion formation, we investigate two specific modifications to the
co-evolving network voter model of opinion formation, studied by Holme and
Newman [1]. First, we replace the rewiring probability parameter by a
distribution of probability of accepting or rejecting opinions between
individuals, accounting for the asymmetric influences in relationships among
individuals in a social group. Second, we modify the rewiring step by a
path-length-based preference for rewiring that reinforces local clustering. We
have investigated the influences of these modifications on the outcomes of the
simulations of this model. We found that varying the shape of the distribution
of probability of accepting or rejecting opinions can lead to the emergence of
two qualitatively distinct final states, one having several isolated connected
components each in internal consensus leading to the existence of diverse set
of opinions and the other having one single dominant connected component with
each node within it having the same opinion. Furthermore, and more importantly,
we found that the initial clustering in network can also induce similar
transitions. Our investigation also brings forward that these transitions are
governed by a weak and complex dependence on system size. We found that the
networks in the final states of the model have rich structural properties
including the small world property for some parameter regimes. [1] P. Holme and
M. Newman, Phys. Rev. E 74, 056108 (2006)
Role of the conduction electrons in mediating exchange interactions in Heusler alloys
Because of large spatial separation of the Mn atoms in Heusler alloys the Mn
3d states belonging to different atoms do not overlap considerably. Therefore
an indirect exchange interaction between Mn atoms should play a crucial role in
the ferromagnetism of the systems. To study the nature of the ferromagnetism of
various Mn-based semi- and full-Heusler alloys we perform a systematic
first-principles calculation of the exchange interactions in these materials.
The calculation of the exchange parameters is based on the frozen-magnon
approach. The calculations show that the magnetism of the Mn-based Heusler
alloys depends strongly on the number of conduction electrons, their spin
polarization and the position of the unoccupied Mn 3d states with respect to
the Fermi level. Various magnetic phases are obtained depending on the
combination of these characteristics. The Anderson's s-d model is used to
perform a qualitative analysis of the obtained results. The conditions leading
to diverse magnetic behavior are identified. If the spin polarization of the
conduction electrons at the Fermi energy is large and the unoccupied Mn 3d
states lie well above the Fermi level, an RKKY-type ferromagnetic interaction
is dominating. On the other hand, the contribution of the antiferromagnetic
superexchange becomes important if unoccupied Mn 3d states lie close to the
Fermi energy. The resulting magnetic behavior depends on the competition of
these two exchange mechanisms. The calculational results are in good
correlation with the conclusions made on the basis of the Anderson s-d model
which provides useful framework for the analysis of the results of
first-principles calculations and helps to formulate the conditions for high
Curie temperature.Comment: 16 pages, 9 figures, 2 table
Spatial Separation of the 3.29 micron Emission Feature and Associated 2 micron Continuum in NGC 7023
We present a new 0.9" resolution 3.29 micron narrowband image of the
reflection nebula NGC 7023. We find that the 3.29 micron IEF in NGC 7023 is
brightest in narrow filaments NW of the illuminating star. These filaments have
been seen in images of K', molecular hydrogen emission lines, the 6.2 and 11.3
micron IEFs, and HCO+. We also detect 3.29 micron emission faintly but
distinctly between the filaments and the star. The 3.29 micron image is in
contrast to narrowband images at 2.09, 2.14, and 2.18 micron, which show an
extended emission peak midway between the filaments and the star, and much
fainter emission near the filaments. The [2.18]-[3.29] color shows a wide
variation, ranging from 3.4-3.6 mag at the 2 micron continuum peak to 5.5 mag
in the filaments. We observe [2.18]-[3.29] to increase smoothly with increasing
distance from the star, up until the filament, suggesting that the main
difference between the spatial distributions of the 2 micron continuum and the
the 3.29 micron emission is related to the incident stellar flux. Our result
suggests that the 3.29 micron IEF carriers are likely to be distinct from, but
related to, the 2 micron continuum emitters. Our finding also imply that, in
NGC 7023, the 2 micron continuum emitters are mainly associated with HI, while
the 3.29 micron IEF carriers are primarily found in warm molecular hydrogen,
but that both can survive in HI or molecular hydrogen. (abridged)Comment: to appear in ApJ, including 1 table and 8 figures, high resolution
figures available at http://www.ast.cam.ac.uk/~jin/n7023
Exchange interactions and temperature dependence of the magnetization in half--metallic Heusler alloys
We study the exchange interactions in half-metallic Heusler alloys using
first-principles calculations in conjunction with the frozen-magnon
approximation. The Curie temperature is estimated within both mean-field (MF)
and random-phase-approximation (RPA) approaches. For the half-Heusler alloys
NiMnSb and CoMnSb the dominant interaction is between the nearest Mn atoms. In
this case the MF and RPA estimations differ strongly. The RPA approach provides
better agreement with experiment. The exchange interactions are more complex in
the case of full-Heusler alloys CoMnSi and CoCrAl where the dominant
effects are the inter-sublattice interactions between the Mn(Cr) and Co atoms
and between Co atoms at different sublattices. For these compounds we find that
both MF and RPA give very close values of the Curie temperature slightly
underestimating experimental quantities. We study the influence of the lattice
compression on the magnetic properties. The temperature dependence of the
magnetization is calculated using the RPA method within both quantum mechanical
and classical approaches.Comment: New figures and discussio
The Ultrasensitivity of Living Polymers
Synthetic and biological living polymers are self-assembling chains whose
chain length distributions (CLDs) are dynamic. We show these dynamics are
ultrasensitive: even a small perturbation (e.g. temperature jump) non-linearly
distorts the CLD, eliminating or massively augmenting short chains. The origin
is fast relaxation of mass variables (mean chain length, monomer concentration)
which perturbs CLD shape variables before these can relax via slow chain growth
rate fluctuations. Viscosity relaxation predictions agree with experiments on
the best-studied synthetic system, alpha-methylstyrene.Comment: 4 pages, submitted to Phys. Rev. Let
- …