160 research outputs found

    Disentangling neuronal inhibition and inhibitory pathways in the lateral habenula

    Get PDF
    The lateral habenula (LHb) is hyperactive in depression, and thus potentiating inhibition of this structure makes an interesting target for future antidepressant therapies. However, the circuit mechanisms mediating inhibitory signalling within the LHb are not well-known. We addressed this issue by studying LHb neurons expressing either parvalbumin (PV) or somatostatin (SOM), two markers of particular sub-classes of neocortical inhibitory neurons. Here, we find that both PV and SOM are expressed by physiologically distinct sub-classes. Furthermore, we describe multiple sources of inhibitory input to the LHb arising from both local PV-positive neurons, from PV-positive neurons in the medial dorsal thalamic nucleus, and from SOM-positive neurons in the ventral pallidum. These findings hence provide new insight into inhibitory control within the LHb, and highlight that this structure is more neuronally diverse than previously thought

    Effects of early life stress and subsequent re-exposure to stress on neuronal activity in the lateral habenula

    Get PDF
    Early life stress can result in depression in humans and depressive-like behaviour in rodents. In various animal models of depression, the lateral habenula (LHb) has been shown to become hyperactive immediately after early life stress. However, whether these pathological changes persist into adulthood is less well understood. Hence, we utilised the maternal separation (MS) model of depression to study how early life stress alters LHb physiology and depressive behaviour in adult mice. We find that only a weak depressive phenotype persists into adulthood which surprisingly is underpinned by LHb hypoactivity in acute slices, accompanied by alterations in both excitatory and inhibitory signalling. However, while we find the LHb to be less active at rest, we report that the neurons reside in a sensitised state where they are more responsive to re-exposure to stress in adulthood in the form of acute restraint, thus priming them to respond to aversive events with an increase in neuronal activity mediated by changes in glutamatergic transmission. These findings thus suggest that in addition to LHb hyperactivity, hypoactivity likely also promotes an adverse phenotype. Re-exposure to stress results in the reappearance of LHb hyperactivity offering a possible mechanism to explain how depression relapses occur following previous depressive episodes

    Inhibition within the lateral habenula—implications for affective disorders

    Get PDF
    The lateral habenula (LHb) is a key brain region implicated in the pathology of major depressive disorder (MDD). Specifically, excitatory LHb neurons are known to be hyperactive in MDD, thus resulting in a greater excitatory output mainly to downstream inhibitory neurons in the rostromedial tegmental nucleus. This likely results in suppression of downstream dopaminergic ventral tegmental area neurons, therefore, resulting in an overall reduction in reward signalling. In line with this, increasing evidence implicates aberrant inhibitory signalling onto LHb neurons as a co-causative factor in MDD, likely as a result of disinhibition of excitatory neurons. Consistently, growing evidence now suggests that normalising inhibitory signalling within the LHb may be a potential therapeutic strategy for MDD. Despite these recent advances, however, the exact pharmacological and neural circuit mechanisms which control inhibitory signalling within the LHb are still incompletely understood. Thus, in this review article, we aim to provide an up-to-date summary of the current state of knowledge of the mechanisms by which inhibitory signalling is processed within the LHb, with a view of exploring how this may be targeted as a future therapy for MDD

    NDNF is selectively expressed by neocortical, but not habenular neurogliaform cells

    Get PDF
    The lateral habenula (LHb) is a brain structure which is known to be pathologically hyperactive in depression, whereby it shuts down the brains' reward systems. Interestingly, inhibition of the LHb has been shown to have an antidepressant effect, hence making the LHb a fascinating subject of study for developing novel antidepressant therapies. Despite this however, the exact mechanisms by which inhibitory signalling is processed within the LHb remain incompletely understood. Some studies have proposed the existence of locally‐targeting inhibitory interneuron populations within the LHb. One such population is believed to be akin to neocortical neurogliaform cells, yet specific molecular markers for studying these neurons are sparse and hence their function remains elusive. Recently, neuron‐derived neurotrophic factor (NDNF) has been proposed as one such marker for neocortical neurogliaform cells. Using a combination of histological, physiological and optogenetic tools, we hence sought to first validate if NDNF was selectively expressed by such inhibitory neurons within the neocortex, and then if it was confined to a similar population within the LHb. While we report this to be true for the neocortex, we find no such evidence within the LHb; rather that NDNF is expressed without restriction to a particular neuronal sub‐population. These results hence indicate that molecular markers can represent broadly diverse populations of neurons on a region‐to‐region basis, and that therefore each population as defined by molecular marker expression should be validated in each brain structure

    Bioengineering silicon quantum dot theranostics using a network analysis of metabolomic and proteomic data in cardiac ischemia

    Get PDF
    Metabolomic profiling is ideally suited for the analysis of cardiac metabolism in healthy and diseased states. Here, we show that systematic discovery of biomarkers of ischemic preconditioning using metabolomics can be translated to potential nanotheranostics. Thirty-three patients underwent percutaneous coronary intervention (PCI) after myocardial infarction. Blood was sampled from catheters in the coronary sinus, aorta and femoral vein before coronary occlusion and 20 minutes after one minute of coronary occlusion. Plasma was analysed using GC-MS metabolomics and iTRAQ LC-MS/MS proteomics. Proteins and metabolites were mapped into the Metacore network database (GeneGo, MI, USA) to establish functional relevance. Expression of 13 proteins was significantly different (p<0.05) as a result of PCI. Included amongst these was CD44, a cell surface marker of reperfusion injury. Thirty-eight metabolites were identified using a targeted approach. Using PCA, 42% of their variance was accounted for by 21 metabolites. Multiple metabolic pathways and potential biomarkers of cardiac ischemia, reperfusion and preconditioning were identified. CD44, a marker of reperfusion injury, and myristic acid, a potential preconditioning agent, were incorporated into a nanotheranostic that may be useful for cardiovascular applications. Integrating biomarker discovery techniques into rationally designed nanoconstructs may lead to improvements in disease-specific diagnosis and treatment

    Targeted Therapy Resistance Mediated by Dynamic Regulation of Extrachromosomal Mutant EGFR DNA

    Get PDF
    Intratumoral heterogeneity contributes to cancer drug resistance, but the underlying mechanisms are not understood. Single-cell analyses of patient-derived models and clinical samples from glioblastoma patients treated with epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) demonstrate that tumor cells reversibly up-regulate or suppress mutant EGFR expression, conferring distinct cellular phenotypes to reach an optimal equilibrium for growth. Resistance to EGFR TKIs is shown to occur by elimination of mutant EGFR from extrachromosomal DNA. After drug withdrawal, reemergence of clonal EGFR mutations on extrachromosomal DNA follows. These results indicate a highly specific, dynamic, and adaptive route by which cancers can evade therapies that target oncogenes maintained on extrachromosomal DNA

    Protease-activated receptor 2 activation induces behavioural changes associated with depression-like behaviour through microglial-independent modulation of inflammatory cytokines

    Get PDF
    Rationale: Major depressive disorder (MDD) is a leading cause of disability worldwide but currently prescribed treatments do not adequately ameliorate the disorder in a significant portion of patients. Hence, a better appreciation of its aetiology may lead to the development of novel therapies. Objectives: In the present study, we have built on our previous findings indicating a role for protease-activated receptor-2 (PAR2) in sickness behaviour to determine whether the PAR2 activator, AC264613, induces behavioural changes similar to those observed in depression-like behaviour. Methods: AC264613-induced behavioural changes were examined using the open field test (OFT), sucrose preference test (SPT), elevated plus maze (EPM), and novel object recognition test (NOR). Whole-cell patch clamping was used to investigate the effects of PAR2 activation in the lateral habenula with peripheral and central cytokine levels determined using ELISA and quantitative PCR. Results: Using a blood–brain barrier (BBB) permeable PAR2 activator, we reveal that AC-264613 (AC) injection leads to reduced locomotor activity and sucrose preference in mice but is without effect in anxiety and memory-related tasks. In addition, we show that AC injection leads to elevated blood sera IL-6 levels and altered cytokine mRNA expression within the brain. However, neither microglia nor peripheral lymphocytes are the source of these altered cytokine profiles. Conclusions: These data reveal that PAR2 activation results in behavioural changes often associated with depression-like behaviour and an inflammatory profile that resembles that seen in patients with MDD and therefore PAR2 may be a target for novel antidepressant therapies
    corecore