287 research outputs found

    The Application of Integrated Knowledge-based Systems for the Biomedical Risk Assessment Intelligent Network (BRAIN)

    Get PDF
    One of NASA's goals for long duration space flight is to maintain acceptable levels of crew health, safety, and performance. One way of meeting this goal is through the Biomedical Risk Assessment Intelligent Network (BRAIN), an integrated network of both human and computer elements. The BRAIN will function as an advisor to flight surgeons by assessing the risk of in-flight biomedical problems and recommending appropriate countermeasures. This paper describes the joint effort among various NASA elements to develop BRAIN and an Infectious Disease Risk Assessment (IDRA) prototype. The implementation of this effort addresses the technological aspects of the following: (1) knowledge acquisition; (2) integration of IDRA components; (3) use of expert systems to automate the biomedical prediction process; (4) development of a user-friendly interface; and (5) integration of the IDRA prototype and Exercise Countermeasures Intelligent System (ExerCISys). Because the C Language, CLIPS (the C Language Integrated Production System), and the X-Window System were portable and easily integrated, they were chosen as the tools for the initial IDRA prototype. The feasibility was tested by developing an IDRA prototype that predicts the individual risk of influenza. The application of knowledge-based systems to risk assessment is of great market value to the medical technology industry

    Non-Detection of Methane in the Mars Atmosphere by the Curiosity Rover

    Get PDF
    By analogy with Earth, methane in the atmosphere of Mars is a potential signature of ongoing or past biological activity on the planet. During the last decade, Earth-based telescopic and Mars orbit remote sensing instruments have reported significant abundances of methane in the Martian atmosphere ranging from several to tens of parts-per-billion by volume (ppbv). Observations from Earth showed plumes of methane with variations on timescales much faster than expected and inconsistent with localized patches seen from orbit, prompting speculation of sources from sub-surface methanogen bacteria, geological water-rock reactions or infall from comets, micro-meteorites or interplanetary dust. From measurements on NASAs Curiosity Rover that landed near Gale Crater on 5th August 2012, we here report no definitive detection of methane in the near-surface Martian atmosphere. Our in situ measurements were made using the Tunable Laser Spectrometer (TLS) in the Sample Analysis at Mars (SAM) instrument suite6 that made three separate searches on Martian sols 79, 81 and 106 after landing. The measured mean value of 0.39 plus or minus 1.4 ppbv corresponds to an upper limit for methane abundance of 2.7 ppbv at the 95 confidence level. This result is in disagreement with both the remote sensing spacecraft observations taken at lower sensitivity and the telescopic observations that relied on subtraction of a very large contribution from terrestrial methane in the intervening observation path. Since the expected lifetime of methane in the Martian atmosphere is hundreds of years, our results question earlier observations and set a low upper limit on the present day abundance, reducing the probability of significant current methanogenic microbial activity on Mars

    Space Telescope Imaging Spectrograph slitless observations of Small Magellanic Cloud Planetary Nebulae: a study on morphology, emission line intensity, and evolution

    Full text link
    A sample of 27 Planetary Nebulae (PNs) in the Small Magellanic Clouds (SMC) have been observed with the Hubble Space Telescope Imaging Spectrograph (HST/STIS) to determine their morphology, size, and the spatial variation of the ratios of bright emission lines. The morphologies of SMC PNs are similar to those of LMC and Galactic PNs. However, only a third of the resolved SMC PNs are asymmetric, compared to half in the LMC. The low metallicity environment of the SMC seems to discourage the onset of bipolarity in PNs. We measured the line intensity, average surface brightness (SB), and photometric radius of each nebula in halpha, hbeta, [O III] lambda4959 and 5007, [NII] 6548 and 6584, [S II] lambda6716 and 5731, He I 6678, and [OI] 6300 and 6363. We show that the surface brightness to radius relationship is the same as in LMC PNs, indicating its possible use as a distance scale indicator for Galactic PNs. We determine the electron densities and the ionized masses of the nebulae where the [S II] lines were measured accurately, and we find that the SMC PNs are denser than the LMC PNs by a factor of 1.5. The average ionized mass of the SMC PNs is 0.3 Msun. We also found that the median [O III]/hbeta intensity ratio in the SMC is about half than the corresponding LMC median. We use Cloudy to model the dependence of the [O III]/hbeta ratio on the oxygen abundance. Our models encompass very well the average observed physical quantities. We suggest that the SMC PNs are principally cooled by the carbon lines, making it hard to study their excitation based on the optical lines at our disposal.Comment: Accepted for publication in the Astrophysical Journal, 30 pages, 13 figures, 6 tables. For high resolution version of Figs 1 to 6, see http://archive.stsci.edu/hst/mcpn/home.htm

    A comparison of didodecyldimethylammonium bromide adsorbed at mica/water and silica/water interfaces using neutron reflection.

    Get PDF
    The layer structure of the dichain alkyl ammonium surfactant, didodecyldimethylammonium bromide (DDAB), adsorbed from water on to silica and mica surfaces has been determined using neutron reflection. Although sometimes considered interchangeable surfaces for study, we present evidence of significant differences in the adsorbed layer structure below the critical micelle concentration. A complete DDAB bilayer was assembled at the water/mica interface at concentrations below the critical micelle concentration (CMC). In contrast it is not until the CMC was reached that the complete bilayer structure formed on the oxidised silicon crystal. Removal of the complete bilayer on both surfaces was attempted by both washing and ion exchange yet the adsorbed structure proved tenacious.BPThis is the author accepted manuscript. The final version is available from Elsevier via http://dx.doi.org/10.1016/j.jcis.2016.06.01

    The Deuterium to Hydrogen Ratio in the Water that Formed the Yellowknife Bay Mudstones in Gale Crater

    Get PDF
    A suite of isotope ratios of light elements in the present martian atmosphere (13C/12C, 15N/14N, 18O/16O, 38Ar/36Ar, and D/H) are all substantially enriched in the heavy element suggesting atmospheric loss to space over the past billions of years with preferential loss of the lighter isotope from each pair. In situ measurements from MSL's Sample Analysis at Mars (SAM) instrument [e.g. 1,2,3] have considerably refined previous measurements from the Viking mass spectrometers [e.g. 4], from remote spectroscopic observations [e.g. 5,6], and from martian meteorite studies [e.g. 7,8]. The persistence of habitable environments such as the ancient Yellowknife Bay lake recently revealed by measurements from the Curiosity rover [9] depends on the surface temperatures and the duration of an atmosphere thicker than that at present. Current and planned measurements from orbit with the Mars Express and MAVEN missions respectively intend to study the processes of atmospheric escape including solar wind interaction, sputtering, thermal escape, and dissociative recombination, and determine or refine the current rate of atmospheric loss caused by these and other mechanisms. The goal of these programs is to understand the physical processes sufficiently well so that robust extrapolations over the past billions of years can be made D/H is measured by both the Tunable Laser Spectrometer (TLS) and the Quadrupole Mass Spectrometer (QMS) of the SAM suite. to predict the atmospheric and surface conditions on early Mars. However, the study of the history of martian atmospheric evolution will be greatly facilitated if we are able to also directly measure the isotopic composition of volatiles captured in rocks that are representative of the ancient atmosphere. To date, D/H is one of the most promising candidates for this study since water is the most abundant volatile thermally released from the Yellowknife Bay phylosilicates discovered by the SAM and CheMin experiments of MSL and it

    Whole-of-school physical activity implementation in the context of the Dubai Fitness Challenge

    Get PDF
    Introduction: Physical activity (PA) promotion among school-aged youth is a global health priority. Recommendations for such promotion include implementing whole-of-school approaches that maximize resources across the school environment. This study examined schools’ participation in an annual, government-led, and emirate-wide initiative in Dubai, called the Dubai Fitness Challenge, in which the goal is to accrue 30 minutes of PA every day for 30 days (as such, the initiative is colloquially referred to as “Dubai 30x30”). Methods: A mixed-methods design was employed for this study. Three schools were recruited using convenience sampling. Participants were 18 physical education teachers, 20 classroom teachers, 2 principals and 45 students. Data sources included surveys, focus groups, and interviews. Data were analyzed using descriptive statistics, multinomial logistic regression, and open and axial coding to develop themes. Results: School staff reported that most Dubai 30x30 activities were provided in physical education, at break times during school, and before and after school. Students reported that they mainly participated in Dubai 30x30 activities during physical education and occasionally participated in activities after school and on weekends. During school, students were more likely to reach higher PA intensity levels when they were in contexts other than the regular classroom setting. Among school staff, physical education teachers were most involved and classroom teachers were least involved in promoting Dubai 30x30. Parent engagement was high. Staff perceived that Dubai 30x30 brought the community together, but physical education teachers also indicated there was a lack of implementation guidance and they felt burdened. Participants believed Dubai 30x30 increased PA participation and helped to promote their schools. Discussion: This study provides an initial glimpse into schools’ participation in Dubai 30x30 and suggests that a whole-of-school PA lens is useful in gleaning information that could help to increase and optimize PA opportunities for students
    corecore