1,947 research outputs found

    Statistical Survey of Type III Radio Bursts at Long Wavelengths Observed by the Solar TErrestrial RElations Observatory (STEREO)/Waves Instruments: Radio Flux Density Variations with Frequency

    Full text link
    We have performed a statistical study of 152152 Type III radio bursts observed by Solar TErrestrial RElations Observatory (STEREO)/Waves between May 2007 and February 2013. We have investigated the flux density between 125125kHz and 1616MHz. Both high- and low-frequency cutoffs have been observed in 60 60\,% of events suggesting an important role of propagation. As already reported by previous authors, we observed that the maximum flux density occurs at 11MHz on both spacecraft. We have developed a simplified analytical model of the flux density as a function of radial distance and compared it to the STEREO/Waves data.Comment: published in Solar Physic

    LpL^p-Spectral theory of locally symmetric spaces with QQ-rank one

    Full text link
    We study the LpL^p-spectrum of the Laplace-Beltrami operator on certain complete locally symmetric spaces M=Γ\XM=\Gamma\backslash X with finite volume and arithmetic fundamental group Γ\Gamma whose universal covering XX is a symmetric space of non-compact type. We also show, how the obtained results for locally symmetric spaces can be generalized to manifolds with cusps of rank one

    Double transverse spin asymmetries in vector boson production

    Get PDF
    We investigate a helicity non-flip double transverse spin asymmetry in vector boson production in hadron-hadron scattering, which was first considered by Ralston and Soper at the tree level. It does not involve transversity functions and in principle also arises in W-boson production for which we present the expressions. The asymmetry requires observing the transverse momentum of the vector boson, but it is not suppressed by explicit inverse powers of a large energy scale. However, as we will show, inclusion of Sudakov factors causes suppression of the asymmetry, which increases with energy. Moreover, the asymmetry is shown to be approximately proportional to x_1 g_1(x_1) x_2 \bar g_1(x_2), which gives rise to additional suppression at small values of the light cone momentum fractions. This implies that it is negligible for Z or W production and is mainly of interest for \gamma^* at low energies. We also compare the asymmetry with other types of double transverse spin asymmetries and discuss how to disentangle them.Comment: 12 pages, Revtex, 2 Postscript figures, uses aps.sty, epsf.sty; figures replaced, a few minor other correction

    The detection of Gravitational Waves

    Get PDF
    This chapter is concerned with the question: how do gravitational waves (GWs) interact with their detectors? It is intended to be a theory review of the fundamental concepts involved in interferometric and acoustic (Weber bar) GW antennas. In particular, the type of signal the GW deposits in the detector in each case will be assessed, as well as its intensity and deconvolution. Brief reference will also be made to detector sensitivity characterisation, including very summary data on current state of the art GW detectors.Comment: 33 pages, 12 figures, LaTeX2e, Springer style files --included. For Proceedings of the ERE-2001 Conference (Madrid, September 2001

    First-principles study of the ferroelastic phase transition in CaCl_2

    Full text link
    First-principles density-functional calculations within the local-density approximation and the pseudopotential approach are used to study and characterize the ferroelastic phase transition in calcium chloride (CaCl_2). In accord with experiment, the energy map of CaCl_2 has the typical features of a pseudoproper ferroelastic with an optical instability as ultimate origin of the phase transition. This unstable optic mode is close to a pure rigid unit mode of the framework of chlorine atoms and has a negative Gruneisen parameter. The ab-initio ground state agrees fairly well with the experimental low temperature structure extrapolated at 0K. The calculated energy map around the ground state is interpreted as an extrapolated Landau free-energy and is successfully used to explain some of the observed thermal properties. Higher-order anharmonic couplings between the strain and the unstable optic mode, proposed in previous literature as important terms to explain the soft-phonon temperature behavior, are shown to be irrelevant for this purpose. The LAPW method is shown to reproduce the plane-wave results in CaCl_2 within the precision of the calculations, and is used to analyze the relative stability of different phases in CaCl_2 and the chemically similar compound SrCl_2.Comment: 9 pages, 6 figures, uses RevTeX

    Relativistic Mean Field Model with Generalized Derivative Nucleon-Meson Couplings

    Get PDF
    The quantum hadrodynamics (QHD) model with minimal nucleon-meson couplings is generalized by introducing couplings of mesons to derivatives of the nucleon field in the Lagrangian density. This approach allows an effective description of a state-dependent in-medium interaction in the mean-field approximation. Various parametrizations for the generalized couplings are developed and applied to infinite nuclear matter. In this approach, scalar and vector self-energies depend on both density and momentum similarly as in the Dirac-Brueckner theory. The Schr\"{o}diger-equivalent optical potential is much less repulsive at high nucleon energies as compared to standard relativistic mean field models and thus agrees better with experimental findings. The derivative couplings in the extended model have significant effects on properties of symmetric nuclear matter and neutron matter.Comment: 35 pages, 1 table, 10 figure

    Anatomy of Spin-Transfer Torque

    Full text link
    Spin-transfer torques occur in magnetic heterostructures because the transverse component of a spin current that flows from a non-magnet into a ferromagnet is absorbed at the interface. We demonstrate this fact explicitly using free electron models and first principles electronic structure calculations for real material interfaces. Three distinct processes contribute to the absorption: (1) spin-dependent reflection and transmission; (2) rotation of reflected and transmitted spins; and (3) spatial precession of spins in the ferromagnet. When summed over all Fermi surface electrons, these processes reduce the transverse component of the transmitted and reflected spin currents to nearly zero for most systems of interest. Therefore, to a good approximation, the torque on the magnetization is proportional to the transverse piece of the incoming spin current.Comment: 16 pages, 8 figures, submitted to Phys. Rev.

    Comparison of advanced gravitational-wave detectors

    Get PDF
    We compare two advanced designs for gravitational-wave antennas in terms of their ability to detect two possible gravitational wave sources. Spherical, resonant mass antennas and interferometers incorporating resonant sideband extraction (RSE) were modeled using experimentally measurable parameters. The signal-to-noise ratio of each detector for a binary neutron star system and a rapidly rotating stellar core were calculated. For a range of plausible parameters we found that the advanced LIGO interferometer incorporating RSE gave higher signal-to-noise ratios than a spherical detector resonant at the same frequency for both sources. Spheres were found to be sensitive to these sources at distances beyond our galaxy. Interferometers were sensitive to these sources at far enough distances that several events per year would be expected
    • …
    corecore