5,127 research outputs found

    The longer your work hours, the worse your relationship? The role of selective optimization with compensation in the associations of working time with relationship satisfaction and self-disclosure in dual-career couples

    Get PDF
    This two-wave panel study investigates the associations between working time, selective optimization with compensation in private life and relationship outcomes (i.e. relationship satisfaction and self-disclosure) in dual-career couples. We propose that one partner’s selective optimization with compensation in private life either mediates or moderates the association of this partner’s working time and relationship outcomes (i.e. relationship satisfaction and self-disclosure). Moreover, we postulate the crossover (i.e. transmission) of relationship satisfaction and self-disclosure within the couple. To test these hypotheses, we conducted an online study with a time lag of six months, in which 285 dual-career couples took part. We found evidence for selective optimization with compensation in private life as a mediator: working time spent by partners in dual-career couples was associated with selective optimization with compensation in their private life that, in turn, predicted relationship satisfaction and self-disclosure. Results did not support the assumption that one partner’s selective optimization with compensation in private life moderates the association between working time and relationship satisfaction and self-disclosure. Relationship satisfaction, but not self-disclosure, crossed over within the couples. The results challenge the assumption that longer work hours have negative consequences for romantic relationships

    SoLid : Search for Oscillations with Lithium-6 Detector at the SCK-CEN BR2 reactor

    Get PDF
    Sterile neutrinos have been considered as a possible explanation for the recent reactor and Gallium anomalies arising from reanalysis of reactor flux and calibration data of previous neutrino experiments. A way to test this hypothesis is to look for distortions of the anti-neutrino energy caused by oscillation from active to sterile neutrino at close stand-off (similar to 6-8m) of a compact reactor core. Due to the low rate of anti-neutrino interactions the main challenge in such measurement is to control the high level of gamma rays and neutron background. The SoLid experiment is a proposal to search for active-to-sterile anti-neutrino oscillation at very short baseline of the SCK center dot CEN BR2 research reactor. This experiment uses a novel approach to detect anti-neutrino with a highly segmented detector based on Lithium-6. With the combination of high granularity, high neutron-gamma discrimination using 6LiF:ZnS(Ag) and precise localization of the Inverse Beta Decay products, a better experimental sensitivity can be achieved compared to other state-of-the-art technology. This compact system requires minimum passive shielding allowing for very close stand off to the reactor. The experimental set up of the SoLid experiment and the BR2 reactor will be presented. The new principle of neutrino detection and the detector design with expected performance will be described. The expected sensitivity to new oscillations of the SoLid detector as well as the first measurements made with the 8 kg prototype detector deployed at the BR2 reactor in 2013-2014 will be reported

    Solar Wind and its Evolution

    Get PDF
    By using our previous results of magnetohydrodynamical simulations for the solar wind from open flux tubes, I discuss how the solar wind in the past is different from the current solar wind. The simulations are performed in fixed one-dimensional super-radially open magnetic flux tubes by inputing various types of fluctuations from the photosphere, which automatically determines solar wind properties in a forward manner. The three important parameters which determine physical properties of the solar wind are surface fluctuation, magnetic field strengths, and the configuration of magnetic flux tubes. Adjusting these parameters to the sun at earlier times in a qualitative sense, I infer that the quasi-steady-state component of the solar wind in the past was denser and slightly slower if the effect of the magneto-centrifugal force is not significant. I also discuss effects of magneto-centrifugal force and roles of coronal mass ejections.Comment: 6 pages, 1 figure, Earth, Planets, & Space in press (based on 5th Alfven Conference) correction of discussion on a related pape

    Evidence for Efimov quantum states in an ultracold gas of cesium atoms

    Full text link
    Systems of three interacting particles are notorious for their complex physical behavior. A landmark theoretical result in few-body quantum physics is Efimov's prediction of a universal set of bound trimer states appearing for three identical bosons with a resonant two-body interaction. Counterintuitively, these states even exist in the absence of a corresponding two-body bound state. Since the formulation of Efimov's problem in the context of nuclear physics 35 years ago, it has attracted great interest in many areas of physics. However, the observation of Efimov quantum states has remained an elusive goal. Here we report the observation of an Efimov resonance in an ultracold gas of cesium atoms. The resonance occurs in the range of large negative two-body scattering lengths, arising from the coupling of three free atoms to an Efimov trimer. Experimentally, we observe its signature as a giant three-body recombination loss when the strength of the two-body interaction is varied. We also detect a minimum in the recombination loss for positive scattering lengths, indicating destructive interference of decay pathways. Our results confirm central theoretical predictions of Efimov physics and represent a starting point with which to explore the universal properties of resonantly interacting few-body systems. While Feshbach resonances have provided the key to control quantum-mechanical interactions on the two-body level, Efimov resonances connect ultracold matter to the world of few-body quantum phenomena.Comment: 18 pages, 3 figure

    Viral Hepatitis and Rapid Diagnostic Test Based Screening for HBsAg in HIV-infected Patients in Rural Tanzania.

    Get PDF
    \ud \ud Co-infection with hepatitis B virus (HBV) is highly prevalent in people living with HIV in Sub-Saharan Africa. Screening for HBV surface antigen (HBsAg) before initiation of combination antiretroviral therapy (cART) is recommended. However, it is not part of diagnostic routines in HIV programs in many resource-limited countries although patients could benefit from optimized antiretroviral therapy covering both infections. Screening could be facilitated by rapid diagnostic tests for HBsAg. Operating experience with these point of care devices in HIV-positive patients in Sub-Saharan Africa is largely lacking. We determined the prevalence of HBV and Hepatitis C virus (HCV) infection as well as the diagnostic accuracy of the rapid test device Determine HBsAg in an HIV cohort in rural Tanzania. Prospectively collected blood samples from adult, HIV-1 positive and antiretroviral treatment-naïve patients in the Kilombero and Ulanga antiretroviral cohort (KIULARCO) in rural Tanzania were analyzed at the point of care with Determine HBsAg, a reference HBsAg EIA and an anti-HCV EIA. Samples of 272 patients were included. Median age was 38 years (interquartile range [IQR] 32-47), 169/272 (63%) subjects were females and median CD4+ count was 250 cells/µL (IQR 97-439). HBsAg was detected in 25/272 (9.2%, 95% confidence interval [CI] 6.2-13.0%) subjects. Of these, 7/25 (28%) were positive for HBeAg. Sensitivity of Determine HBsAg was rated at 96% (95% CI 82.8-99.6%) and specificity at 100% (95% CI, 98.9-100%). Antibodies to HCV (anti-HCV) were found in 10/272 (3.7%, 95% CI 2.0-6.4%) of patients. This study reports a high prevalence of HBV in HIV-positive patients in a rural Tanzanian setting. The rapid diagnostic test Determine HBsAg is an accurate assay for screening for HBsAg in HIV-1 infected patients at the point of care and may further help to guide cART in Sub-Saharan Africa

    Concurrent chemoradiotherapy for squamous cell carcinoma of the anus using a shrinking field radiotherapy technique without a boost

    Get PDF
    Chemoradiotherapy (CRT) is now widely accepted as the primary treatment modality for squamous cell cancer of the anus. While randomised trials have clearly shown CRT to be more effective than radiotherapy alone, there remains uncertainty over the optimal integration of chemotherapy and radiation. We describe a series of 50 patients treated by a site specialist gastrointestinal nonsurgical oncologist with CRT at a single UK centre. Chemotherapy comprised mitomycin C (MMC) (day 1) and 5-fluorouracil (5-FU) (days 1–4, and 29–32), concurrent with 50 Gy in 25 fractions radiation, using a two-phase shrinking field technique. A radiation boost was not planned. At a median follow-up of 48 months, 11 (22%) of the patients have failed locally, of which three have been surgically salvaged. Nine (18%) have died of anal cancer. These results are comparable with those from large randomised studies, and suggest that a two-phase shrinking field radiotherapy technique with no boost, concurrent with MMC/5-FU chemotherapy, is an effective regimen for this disease. The CRT regimen described here provides the basis for the ‘control arm’ of the current UK-randomised CRT trial in anal cancer (ACT2)

    Models of Star-Planet Magnetic Interaction

    Full text link
    Magnetic interactions between a planet and its environment are known to lead to phenomena such as aurorae and shocks in the solar system. The large number of close-in exoplanets that were discovered triggered a renewed interest in magnetic interactions in star-planet systems. Multiple other magnetic effects were then unveiled, such as planet inflation or heating, planet migration, planetary material escape, and even modification of the host star properties. We review here the recent efforts in modelling and understanding magnetic interactions between stars and planets in the context of compact systems. We first provide simple estimates of the effects of magnetic interactions and then detail analytical and numerical models for different representative scenarii. We finally lay out a series of future developments that are needed today to better understand and constrain these fascinating interactions.Comment: 23 pages, 10 figures, accepted as a chapter in the Handbook of Exoplanet

    Observation of an Efimov spectrum in an atomic system

    Full text link
    In 1970 V. Efimov predicted a puzzling quantum-mechanical effect that is still of great interest today. He found that three particles subjected to a resonant pairwise interaction can join into an infinite number of loosely bound states even though each particle pair cannot bind. Interestingly, the properties of these aggregates, such as the peculiar geometric scaling of their energy spectrum, are universal, i.e. independent of the microscopic details of their components. Despite an extensive search in many different physical systems, including atoms, molecules and nuclei, the characteristic spectrum of Efimov trimer states still eludes observation. Here we report on the discovery of two bound trimer states of potassium atoms very close to the Efimov scenario, which we reveal by studying three-particle collisions in an ultracold gas. Our observation provides the first evidence of an Efimov spectrum and allows a direct test of its scaling behaviour, shedding new light onto the physics of few-body systems.Comment: 10 pages, 3 figures, 1 tabl

    Time for T? Immunoinformatics addresses the challenges of vaccine design for neglected tropical and emerging infectious diseases

    Get PDF
    Vaccines have been invaluable for global health, saving lives and reducing healthcare costs, while also raising the quality of human life. However, newly emerging infectious diseases (EID) and more well-established tropical disease pathogens present complex challenges to vaccine developers; in particular, neglected tropical diseases, which are most prevalent among the world’s poorest, include many pathogens with large sizes, multistage life cycles and a variety of nonhuman vectors. EID such as MERS-CoV and H7N9 are highly pathogenic for humans. For many of these pathogens, while their genomes are available, immune correlates of protection are currently unknown. These complexities make developing vaccines for EID and neglected tropical diseases all the more difficult. In this review, we describe the implementation of an immunoinformatics-driven approach to systematically search for key determinants of immunity in newly available genome sequence data and design vaccines. This approach holds promise for the development of 21st century vaccines, improving human health everywhere
    • …
    corecore