1,066 research outputs found

    Maasi: A 3D printed spin coater with touchscreen

    Get PDF
    Spin coaters are widely used to apply thin films of a material uniformly over a flat substrate. Despite the simplicity of this technique the entry price for such machines might be prohibitive, ranging from few hundreds to thousands of Euros. Here we present Maasi, an affordable alternative that is easy to build and has all functional key features to be used in a wide range of applications. Our design has a price of less than hundred Euros and an assembly time of only two hours. One of the key design principles was to use only 3D printed parts in combination with affordable Commercial Off-The-Shelf (COTS) components [1]. Reducing the complexity we use an electronic speed controller (ESC) with telemetry, to eliminate the need for a rotor position sensor [2]. A touchscreen further improves its usability, thus setting a perfect startpoint for the design of other affordable lab tools. The Maasi project includes different 3D printable substrate holders allowing treatment of formats up to 80 mm in diameter. We furthermore validate the Maasi spin coater by measuring its speed accuracy and performance for coating polydimethylsiloxane (PDMS) on glass coverslips for mechanobiological assays.Peer Reviewe

    Addressing health literacy in schools in the WHO European Region

    Get PDF
    Paakkari L, Inchley J, Anette S, Weber MW, Okan O. Addressing health literacy in schools in the WHO European Region. Public health panorama. 2019;5(2-3):186-190

    CD38: A NAADP degrading enzyme

    Get PDF
    AbstractThe role of the multifunctional enzyme CD38 in formation of the Ca2+-mobilizing second messenger nicotinic acid adenine dinucleotide phosphate (NAADP) was investigated. Gene silencing of CD38 did neither inhibit NAADP synthesis in intact Jurkat T cells nor in thymus or spleen obtained from CD38 knock out mice. In vitro, both NAADP formation by base-exchange and degradation to 2-phospho adenosine diphosphoribose were efficiently decreased. Thus in vivo CD38 appears to be a NAADP degrading rather than a NAADP forming enzyme, perhaps avoiding desensitizing NAADP levels in intact cells

    Self-Assembly and Conformation of Tetrapyridilporphyrin on the Ag(111) Surface

    Get PDF
    We present a low-temperature scanning tunneling microscopy (STM) study on the supramolecular ordering of tetrapyridyl-porphyrin (TPyP) molecules on Ag(111). Vapor deposition in a wide substrate temperature range reveals that TPyP molecules easily diffuse and self-assemble into large, highly ordered chiral domains. We identify two mirror-symmetric unit cells, each containing two differently oriented molecules. From an analysis of the respective arrangement it is concluded that lateral intermolecular interactions control the packing of the layer, while its orientation is induced by the coupling to the substrate. This finding is corroborated by molecular mechanics calculations. High-resolution STM images recorded at 15 K allow a direct identification of intramolecular features. This makes it possible to determine the molecular conformation of TPYP on Ag(111). The pyridyl groups are alternately rotated out of the porphyrin plane by an angle of 60°

    SPI-1 virulence gene expression modulates motility of Salmonella Typhimurium in a proton motive force- and adhesins-dependent manner

    Get PDF
    Both the bacterial flagellum and the evolutionary related injectisome encoded on the Salmonella pathogenicity island 1 (SPI-1) play crucial roles during the infection cycle of Salmonella species. The interplay of both is highlighted by the complex cross-regulation that includes transcriptional control of the flagellar master regulatory operon flhDC by HilD, the master regulator of SPI-1 gene expression. Contrary to the HilD-dependent activation of flagellar gene expression, we report here that activation of HilD resulted in a dramatic loss of motility, which was dependent on the presence of SPI-1. Single cell analyses revealed that HilD-activation triggers a SPI-1-dependent induction of the stringent response and a substantial decrease in proton motive force (PMF), while flagellation remains unaffected. We further found that HilD activation enhances the adhesion of Salmonella to epithelial cells. A transcriptome analysis revealed a simultaneous upregulation of several adhesin systems, which, when overproduced, phenocopied the HilD-induced motility defect. We propose a model where the SPI-1-dependent depletion of the PMF and the upregulation of adhesins upon HilD-activation enable flagellated Salmonella to rapidly modulate their motility during infection, thereby enabling efficient adhesion to host cells and delivery of effector proteins.Peer Reviewe

    Molecular Nanoscience and Engineering on Surfaces

    Get PDF
    Molecular engineering of low-dimensional materials exploiting controlled self-assembly and positioning of individual atoms or molecules at surfaces opens up new pathways to control matter at the nanoscale. Our research thus focuses on the study of functional molecules and supramolecular architectures on metal substrates. As principal experimental tools we employ low-temperature scanning tunneling microscopy and spectroscopy. Here we review recent studies in our lab at UBC: Controlled manipulation of single CO molecules, self-assembled biomolecular nanogratings on Ag(111) and their use for electron confinement, as well as the organisation, conformation, metalation and electronic structure of adsorbed porphyrins

    Zwitterionic Self-Assembly of L-Methionine Nanogratings on the Ag(111) Surface

    Get PDF
    The engineering of complex architectures from functional molecules on surfaces provides new pathways to control matter at the nanoscale. In this article, we present a combined study addressing the self-assembly of the amino acid L-methionine on Ag(111). Scanning tunneling microscopy data reveal spontaneous ordering in extended molecular chains oriented along high-symmetry substrate directions. At intermediate coverages, regular biomolecular gratings evolve whose periodicity can be tuned at the nanometer scale by varying the methionine surface concentration. Their characteristics and stability were confirmed by helium atomic scattering. X-ray photoemission spectroscopy and high-resolution scanning tunneling microscopy data reveal that the L-methionine chaining is mediated by zwitterionic coupling, accounting for both lateral links and molecular dimerization. This methionine molecular recognition scheme is reminiscent of sheet structures in amino acid crystals and was corroborated by molecular mechanics calculations. Our findings suggest that zwitterionic assembly of amino acids represents a general construction motif to achieve biomolecular nanoarchitectures on surfaces

    Comments on "Economic policy for the European Community - the way forward". Selection of comments prepared for a Kiel Symposium on the report of the Group of Rome

    Full text link
    Table of Contents: Herbert Giersch, Gottfried Haberler, Jan Tumlir, Juergen B. Donges, Bela Balassa, Europe's Role in the World Economy; Fritz Machlup, Johann Schollhorn, Norbert Walter Pascal Salin, Roland Vaubel, Roads to Monetary Union; Willi Albers, Fritz Neumark, Carl S. Shoup, Dieter Biehl, Fiscal Harmonization; Dieter Biehl, Bela Balassa, Claus Noe, Sebastian Schnyder, The Scope of a Common Regional Policy; Adolf Weber, Tim Josling, New Approaches to Structural Policy? Reforming the Common Agricultural Policy; Gerhard Prosi, Gerhard Fels, Klaus Stegemann, New Approaches to Structural Policy? Industrial Policy, Competition and Social Progres
    corecore