55,514 research outputs found

    Performance characteristics of wind profiling radars

    Get PDF
    Doppler radars used to measure winds in the troposphere and lower stratosphere for weather analysis and forecasting are lower-sensitivity versions of mesosphere-stratosphere-troposphere radars widely used for research. The term wind profiler is used to denote these radars because measurements of vertical profiles of horizontal and vertical wind are their primary function. It is clear that wind profilers will be in widespread use within five years: procurement of a network of 30 wind profilers is underway. The Wave Propagation Laboratory (WPL) has operated a small research network of radar wind profilers in Colorado for about two and one-half years. The transmitted power and antenna aperture for these radars is given. Data archiving procedures have been in place for about one year, and this data base is used to evaluate the performance of the radars. One of the prime concerns of potential wind profilers users is how often and how long wind measurements are lacking at a given height. Since these outages constitute an important part of the performance of the wind profilers, they are calculated at three radar frequencies, 50-, 405-, and 915-MHz, (wavelengths of 6-, 0.74-, and 0.33-m) at monthly intervals to determine both the number of outages at each frequency and annual variations in outages

    Study to investigate and evaluate means of optimizing the Ku-band combined radar/communication functions for the space shuttle

    Get PDF
    The performance of the space shuttle orbiter's Ku-Band integrated radar and communications equipment is analyzed for the radar mode of operation. The block diagram of the rendezvous radar subsystem is described. Power budgets for passive target detection are calculated, based on the estimated values of system losses. Requirements for processing of radar signals in the search and track modes are examined. Time multiplexed, single-channel, angle tracking of passive scintillating targets is analyzed. Radar performance in the presence of main lobe ground clutter is considered and candidate techniques for clutter suppression are discussed. Principal system parameter drivers are examined for the case of stationkeeping at ranges comparable to target dimension. Candidate ranging waveforms for short range operation are analyzed and compared. The logarithmic error discriminant utilized for range, range rate and angle tracking is formulated and applied to the quantitative analysis of radar subsystem tracking loops

    COPTRAN - A method of optimum communication systems design

    Get PDF
    Single set of mathematical expressions describes system cost and probability of error of data transmission in terms of four basic parameters in the link equation. A Lagrange multiplier sets up equations whose solutions yield the optimum values for system design considerations and weight and cost values

    A timescale analysis of the Northern Hemisphere temperature response to volcanic and solar forcing

    Get PDF
    International audienceThe Northern Hemisphere temperature response to volcanic and solar forcing in the time interval 1000?1850 AD is studied using first a set of simulations with an intermediate-complexity climate model, driven by reconstructed forcings. Results are then compared with those obtained from the seven high-resolution reconstructed temperature records for the last millenium that are at present available. Focus of the analysis is on the timescale dependence of the response. Results between the model and the proxy-based reconstructions are remarkably consistent. The response to solar forcing is found to equilibrate at interdecadal timescales, reaching an equilibrium value for the regression of 0.2?0.3°C per W/m2. The time interval between volcanic eruptions is typically shorter than the dissipation timescale of the climate system, so that the response to volcanic forcing never equilibrates. As a result, the regression on the volcanic forcing is always lower than the equilibrium value and goes to zero for the longest temporal scales. The trends over the pre-anthropogenic period are found to be relatively large in all reconstructed temperature records, given the trends in the reconstructed forcing and the equilibrium value for the regression. This is at variance with a recent claim that reconstructed temperature records underestimate climatic variations at multi-centennial timescales

    An Editor for Helping Novices to Learn Standard ML

    Get PDF
    This paper describes a novel editor intended as an aid in the learning of the functional programming language Standard ML. A common technique used by novices is programming by analogy whereby students refer to similar programs that they have written before or have seen in the course literature and use these programs as a basis to write a new program. We present a novel editor for ML which supports programming by analogy by providing a collection of editing commands that transform old programs into new ones. Each command makes changes to an isolated part of the program. These changes are propagated to the rest of the program using analogical techniques. We observed a group of novice ML students to determine the most common programming errors in learning ML and restrict our editor such that it is impossible to commit these errors. In this way, students encounter fewer bugs and so their rate of learning increases. Our editor, C Y NTHIA, has been implemented and is due to be tested on st..

    Fundamental noise limitations to supercontinuum generation in microstructure fiber

    Full text link
    Broadband noise on supercontinuum spectra generated in microstructure fiber is shown to lead to amplitude fluctuations as large as 50 % for certain input laser pulse parameters. We study this noise using both experimental measurements and numerical simulations with a generalized stochastic nonlinear Schroedinger equation, finding good quantitative agreement over a range of input pulse energies and chirp values. This noise is shown to arise from nonlinear amplification of two quantum noise inputs: the input pulse shot noise and the spontaneous Raman scattering down the fiber.Comment: 16 pages with 6 figure
    corecore