56,129 research outputs found

    Determining the Shallow Surface Velocity at the Apollo 17 Landing Site

    Get PDF
    Many studies have been performed to determine the shallow surface velocity model at the Apollo 17 landing site. The Lunar Seismic Profiling Experiment (LSPE) had both an active component with eight explosive packages (EPs) and a passive experiment collecting data at various time intervals. Using the eight EPs, the initial shallow surface velocity model was determined to be 250 m/s in the first layer of depth 248 m, 1200 m/s with a depth of 927 m in the second layer, and 4000 m/s down to a depth of 2 km in the third layer. Have performed variations on this study to produce new velocity models shown. Recent studies have also been reanalyzing the passive LSPE data and have found three different thermal moonquake event types occurring at different times within the lunar day. The current goal of the project is to collocate the thermal moonquakes to physical surface features to determine the breakdown of lunar rocks. However, to locate shallow surface events, an accurate velocity model is needed. Presented a thermal moonquake location algorithm using first order approximation, including surface events only. To improve these approximations, a shallow surface velocity is needed

    Checkerboard order in the t--J model on the square lattice

    Full text link
    We propose that the inhomogeneous patterns seen by STM in some underdoped superconducting cuprates could be related to a bond-order-wave instability of the staggered flux state, one of the most studied "normal" state proposed to compete with the d-wave RVB superconductor. A checkerboard pattern is obtained by a Gutzwiller renormalized mean-field theory of the t-J model for doping around 1/8. It is found that the charge modulation is always an order of magnitude smaller than the bond-order modulations. This is confirmed by an exact optimization of the wavefunction by a variational Monte Carlo scheme. The numerical estimates of the order parameters are however found to be strongly reduced w.r.t their mean-field values

    Study of providing omnidirectional vibration isolation to entire space shuttle payload packages

    Get PDF
    Techniques to provide omnidirectional vibration isolation for a space shuttle payload package were investigated via a reduced-scale model. Development, design, fabrication, assembly and test evaluation of a 0.125-scale isolation model are described. Final drawings for fabricated mechanical components are identified, and prints of all drawings are included

    The groupoidal analogue Theta~ to Joyal's category Theta is a test category

    Full text link
    We introduce the groupoidal analogue \tilde\Theta to Joyal's cell category \Theta and we prove that \tilde\Theta is a strict test category in the sense of Grothendieck. This implies that presheaves on \tilde\Theta model homotopy types in a canonical way. We also prove that the canonical functor from \Theta to \tilde\Theta is aspherical, again in the sense of Grothendieck. This allows us to compare weak equivalences of presheaves on \tilde\Theta to weak equivalences of presheaves on \Theta. Our proofs apply to other categories analogous to \Theta.Comment: 41 pages, v2: references added, Remark 7.3 added, v3: metadata update

    Essential Fish Habitat project status report

    Get PDF
    : Groundfish that associate with rugged seafloor types are difficult to assess with bottom-trawl sampling gear. Simrad ME70 multibeam echosounder (MBES) data and video imagery were collected to characterize trawlable and untrawlable areas, and to ultimately improve efforts to determine habitat-specific groundfish biomass. The data were collected during two acoustic-trawl surveys of the Gulf of Alaska (GOA) during 2011 and 2012 by NOAA Alaska Fisheries Science Center (AFSC) researchers. MBES data were collected continuously along the trackline, which included parallel transects (1-20 nmi spacing) and fine-scale survey locations in 2011. Video data were collected at camera stations using a drop camera system. Multibeamderived seafloor metrics were overlaid with the locations of previously conducted AFSC bottomtrawl (BT) survey hauls and 2011 camera stations. Generalized linear models were used to identify the best combination of multibeam metrics to discriminate between trawlable and untrawlable seafloor for the region of overlap between the camera stations or haul paths and the MBES data. The most discriminatory models were chosen based on the Akaike information criterion (AIC). The two best models were developed using data collected at camera stations with either oblique incidence backscatter strength (Sb) or mosaic Sb in combination with bathymetric position index and seafloor ruggedness and described over 54% of the variation between trawlable and untrawlable seafloor types. A map of predicted seafloor trawlability produced from the model using mosaic Sb and benthic-terrain metrics demonstrated that 58% of the area mapped (5,987 km2 ) had \u3e 50% probability of being trawlable and 42% of being untrawlable. The model predicted 69% of trawlable and untrawlable haul locations correctly. Successful hauls occurred in areas with 62% probability of being trawlable and haul locations with gear damage occurred in areas with a 38% probability of being trawlable. This model and map produced from multibeamderived seafloor metrics may be used to refine seafloor interpretation for the AFSC BT surveys and to advance efforts to develop habitat-specific biomass estimates for GOA groundfish populations

    Renormalization of myoglobin-ligand binding energetics by quantum many-body effects

    Get PDF
    We carry out a first-principles atomistic study of the electronic mechanisms of ligand binding and discrimination in the myoglobin protein. Electronic correlation effects are taken into account using one of the most advanced methods currently available, namely a linear-scaling density functional theory (DFT) approach wherein the treatment of localized iron 3d electrons is further refined using dynamical mean-field theory (DMFT). This combination of methods explicitly accounts for dynamical and multi-reference quantum physics, such as valence and spin fluctuations, of the 3d electrons, whilst treating a significant proportion of the protein (more than 1000 atoms) with density functional theory. The computed electronic structure of the myoglobin complexes and the nature of the Fe-O2 bonding are validated against experimental spectroscopic observables. We elucidate and solve a long standing problem related to the quantum-mechanical description of the respiration process, namely that DFT calculations predict a strong imbalance between O2 and CO binding, favoring the latter to an unphysically large extent. We show that the explicit inclusion of many body-effects induced by the Hund's coupling mechanism results in the correct prediction of similar binding energies for oxy- and carbonmonoxymyoglobin.Comment: 7 pages, 5 figures. Accepted for publication in the Proceedings of the National Academy of Sciences of the United States of America (2014). For the published article see http://www.pnas.org/content/early/2014/04/09/1322966111.abstrac

    \u3ci\u3eAcrobasis\u3c/i\u3e Shoot Moth (Lepidoptera: Pyralidae) Infestation-Tree Height Link in a Young Black Walnut Plantation

    Get PDF
    Acrobasis shoot moth infestations were evaluated in a young black walnut progeny test for 4 years, from ages 3 to 6. Infestation levels were greatest on the largest trees in the fourth and fifth year after plantation establishment, and were declining by the sixth year. Acrobasis infestation appears to be a problem primarily on young trees less than 2.5 m in height. There was no evidence for genetic resistance to Acrobasis infestation in black walnut

    Shock accelerated vortex ring

    Full text link
    The interaction of a shock wave with a spherical density inhomogeneity leads to the development of a vortex ring through the impulsive deposition of baroclinic vorticity. The present fluid dynamics videos display this phenomenon and were experimentally investigated at the Wisconsin Shock Tube Laboratory's (WiSTL) 9.2 m, downward firing shock tube. The tube has a square internal cross-section (0.25 m x 0.25 m) with multiple fused silica windows for optical access. The spherical soap bubble is generated by means of a pneumatically retracted injector and released into free-fall 200 ms prior to initial shock acceleration. The downward moving, M = 2.07 shock wave impulsively accelerates the bubble and reflects off the tube end wall. The reflected shock wave re-accelerates the bubble (reshock), which has now developed into a vortex ring, depositing additional vorticity. In the absence of any flow disturbances, the flow behind the reflected shock wave is stationary. As a result, any observed motion of the vortex ring is due to circulation. The shocked vortex ring is imaged at 12,500 fps with planar Mie scattering.Comment: For Gallery of Fluid Motion 200

    Volumetric measurement of tank volume

    Get PDF
    A method is disclosed for determining the volume of compressible gas in a system including incompressible substances in a zero-gravity environment consisting of measuring the change in pressure (delta P) for a known volume change rate (delta V/delta t) in the polytrophic region between isothermal and adiabatic conditions. The measurements are utilized in an idealized formula for determining the change in isothermal pressure (delta P sub iso) for the gas. From the isothermal pressure change (delta iso) the gas volume is obtained. The method is also applicable to determination of gas volume by utilizing work (W) in the compression process. In a passive system, the relationship of specific densities can be obtained
    • …
    corecore