800 research outputs found
Exploring small extra dimensions at the Large Hadron Collider
Many models that include small extra space dimensions predict graviton states
which are well separated in mass, and which can be detected as resonances in
collider experiments. It has been shown that the ATLAS detector at the Large
Hadron Collider can identify such narrow states up to a mass of 2080 GeV in the
decay mode G->ee, using a conservative model. This work extends the study of
the ee channel over the full accessible parameter space, and shows that the
reach could extend as high as 3.5 TeV. It then discusses ways in which the
expected universal coupling of the resonance can be confirmed using other decay
modes. In particular, the mode G-> di-photons is shown to be measurable with
good precision, which would provide powerful confirmation of the graviton
hypothesis. The decays G-> mu mu, WW, ZZ and jet--jet are measurable over a
more limited range of couplings and masses. Using information from mass and
cross-section measurements, the underlying parameters can be extracted. In one
test model, the size of the extra dimension can be determined to a precision in
length of 7x10^-33 m
Rapid assessment of surface-water flood-management options in urban catchments
This is the final version of the article. Available from the publisher via the DOI in this record.Surface-water flooding in urban areas has become a pressing issue due to changing precipitation patterns, expanding urban areas and ageing drainage infrastructure. Selection of flood-management options for widespread implementation using quantitative performance measures is both technically and computationally demanding, which limits the evidence available for decision support. This study presents a new framework for surface-water flood-intervention assessment at high resolution. The framework improves computational efficiency through utilisation of accessible data, simplified representations of interventions and a resource efficient cellular automata flood model. The advantages of this framework are demonstrated through an example case study where the performance of 12 high-level intervention strategies has been evaluated. Results from the case study demonstrate that the framework is able to provide quantitative performance values for a range of interventions. The speed of analysis supports the application of the framework as a decision-making tool for urban water planning.This research was supported by three UK research council funded programmes:
the EPSRC Centre for Doctoral Training in Water Informatics
Science and Engineering [grant number EP/L016214/1], the EPSRC research
fellowship Safe & SuRe water management [grant number EP/K006924/1],
and the NERC project SINATRA - Susceptibility of catchments to INTense
RAinfall and flooding [grant number NE/K008765/1]. LiDAR was provided
by the Environment Agency and mapping was provided through OS
Mastermap data on the Digimap service
Closing the sea surface mixed layer temperature budget from in situ observations alone: Operation Advection during BoBBLE
Sea surface temperature (SST) is a fundamental driver of tropical weather systems such as monsoon rainfall and tropical cyclones. However, understanding of the factors that control SST variability is lacking, especially during the monsoons when in situ observations are sparse. Here we use a ground-breaking observational approach to determine the controls on the SST variability in the southern Bay of Bengal. We achieve this through the first full closure of the ocean mixed layer energy budget derived entirely from in situ observations during the Bay of Bengal Boundary Layer Experiment (BoBBLE). Locally measured horizontal advection and entrainment contribute more significantly than expected to SST evolution and thus oceanic variability during the observation period. These processes are poorly resolved by state-of-the-art climate models, which may contribute to poor representation of monsoon rainfall variability. The novel techniques presented here provide a blueprint for future observational experiments to quantify the mixed layer heat budget on longer time scales and to evaluate these processes in models
Seasonal variation in daily patterns of social contacts in the European badger Meles meles
This is the author accepted manuscript. The final version is available from Wiley via the DOI in this record.Social interactions among hosts influence the persistence and spread of infectious pathogens. Daily 20 and seasonal variation in the frequency and type of social interactions will play an important role in 21 disease epidemiology, and alongside other factors may have an influence on wider disease dynamics 22 by causing seasonal forcing of infection, especially if the seasonal variation experienced by a 23 population is considerable. We explored temporal variation in within-group contacts in a high-24 density population of European badgers Meles meles naturally-infected with bovine tuberculosis. 25 Summer contacts were more likely and of longer duration during the daytime, while the frequency 26 and duration of winter contacts did not differ between day and night. In spring and autumn within-27 group contacts peaked at dawn and dusk, corresponding with when they were of shortest duration 28 with reduced potential for aerosol transmission of pathogens. Summer and winter could be critical 29 for bovine tuberculosis transmission in badgers, due to the high frequency and duration of contacts 30 during resting periods, and we discuss the links between this result and empirical data. This study 31 reveals clear seasonality in daily patterns of contact frequency and duration in species living in stable 32 social groups, suggesting that changes in social contacts could drive seasonal forcing of infection in 33 wildlife populations even when the number of individuals interacting remains similar.MJS is funded by NERC grant NE/M004546/1 awarded to RAM, DPC, DJH and MB, with RJD and the 386 APHA team at Woodchester Park, UK as project partners. Data were collected for NW’s PhD, funded 387 by Defra. We thank Jared Wilson-Aggarwal and two anonymous reviewers for useful comments and 388 Keith Silk for providing the photograph for Figure 1
CCI52 sensitizes tumors to 6-mercaptopurine and inhibits MYCN-amplified tumor growth
The antimetabolite 6-mercaptopurine (6-MP) is an important component in the treatment of specific cancer subtypes, however, the development of drug resistance and dose-limiting toxicities can limit its effectiveness. The therapeutic activity of 6-MP requires cellular uptake, enzymatic conversion to thio-GMP and incorporation of thio-GTP into RNA and DNA, as well as inhibition of de novo purine synthesis by methyl-thio-IMP. Mechanisms that prevent 6-MP entry into the cell, prevent 6-MP metabolism or deplete thiopurine intermediates, can all lead to 6-MP resistance. We previously conducted a high-throughput screen for inhibitors of the multidrug transporter MRP4 using 6-MP sensitivity as the readout. In addition to MRP4-specific inhibitors, we identified a compound, CCI52, that sensitized cell lines to 6-MP independent of this transporter. CCI52 and its more stable analogue CCI52-14 also function as effective chemosensitizers in vivo, substantially extending survival in a transgenic mouse cancer model treated with 6-MP. Chemosensitization was associated with an increase in thio-IMP, suggesting that CCI52 functions directly on 6-MP uptake or metabolism. In addition to its chemosensitizing effects, CCI52 and CCI52-14 inhibited the growth of MYCN-amplified high-risk neuroblastoma cell lines and delayed tumor progression in a MYCN-driven, transgenic mouse model of neuroblastoma. These multifunctional inhibitors may be useful for the further development of anticancer agents and as tools to better understand 6-MP metabolism
Towards Regional Scale Stormwater Flood Management Strategies through Rapid Preliminary Intervention Screening
This is the final version. Available on open access from MDPI via the DOI in this recordData Availability Statement:
Data underpinning this study is available upon reasonable request through contacting the authors.his paper presents the advantages and opportunities for rapid preliminary intervention screening to enhance inclusion of green infrastructures in regional scale stormwater management. Stormwater flooding is widely recognised as a significant and worsening natural hazard across the globe; however, current management approaches aimed at the site scale do not adequately explore opportunities for integrated management at the regional scale at which decisions are made. This research addresses this gap through supporting the development of stormwater management strategies, including green infrastructure, at a regional scale. This is achieved through upscaling a modelling approach using a spatially explicit inundation model (CADDIES) coupled with an economic model of inundation loss (OpenProFIA) to support widescale evaluation of green infrastructure during the informative early-stage development of stormwater management strategies. This novel regional scale approach is demonstrated across a case study of the San Francisco Bay Area, spanning 8300 sq km. The main opportunity from this regional approach is to identify spatial and temporal trends which are used to inform regional planning and direct future detailed modelling efforts. The study highlights several limitations of the new method, suggesting it should be applied as part of a suite of landscape management approaches; however, highlights that it has the potential to complement existing stormwater management toolkitsNatural Capital ProjectEngineering and Physical Sciences Research Council (EPSRC)Natural Environment Research Council (NERC)Betty and Gordon Moore FoundationNanyang Technological University and National Research Foundation, Prime Minister’s Office, SingaporeEngineering School, Universidad de Buenos Aire
Amblyopia and quality of life: a systematic review
Background/Aims
Amblyopia is a common condition which can affect up to 5% of the general population. The health-related quality of life (HRQoL) implications of amblyopia and/or its treatment have been explored in the literature.
Methods
A systematic literature search was undertaken (16th-30th January 2007) to identify the HRQoL implications of amblyopia and/or its treatment.
Results
A total of 25 papers were included in the literature review. The HRQoL implications of amblyopia related specifically to amblyopia treatment, rather than the condition itself. These included the impact upon family life; social interactions; difficulties undertaking daily activities; and feelings and behaviour. The identified studies adopted a number of methodologies. The study populations included; children with the condition; parents of children with amblyopia; and adults who had undertaken amblyopia treatment as a child. Some studies developed their own measures of HRQoL, and others determined HRQoL through proxy measures.
Conclusions
The reported findings of the HRQoL implications are of importance when considering the management of cases of amblyopia. Further research is required to assess the immediate and long-term effects of amblyopia and/or its treatment upon HRQoL using a more standardised approach
Quantum dot-like excitonic behavior in individual single walled-carbon nanotubes.
Semiconducting single-walled carbon nanotubes are one-dimensional materials with great prospects for applications such as optoelectronic and quantum information devices. Yet, their optical performance is hindered by low fluorescent yield. Highly mobile excitons interacting with quenching sites are attributed to be one of the main non-radiative decay mechanisms that shortens the exciton lifetime. In this paper we report on time-integrated photoluminescence measurements on individual polymer wrapped semiconducting carbon nanotubes. An ultra narrow linewidth we observed demonstrates intrinsic exciton dynamics. Furthermore, we identify a state filling effect in individual carbon nanotubes at cryogenic temperatures as previously observed in quantum dots. We propose that each of the CNTs is segmented into a chain of zero-dimensional states confined by a varying local potential along the CNT, determined by local environmental factors such as the amount of polymer wrapping. Spectral diffusion is also observed, which is consistent with the tunneling of excitons between these confined states
Serratamolide is a hemolytic factor produced by Serratia marcescens
Serratia marcescens is a common contaminant of contact lens cases and lenses. Hemolytic factors of S. marcescens contribute to the virulence of this opportunistic bacterial pathogen. We took advantage of an observed hyper-hemolytic phenotype of crp mutants to investigate mechanisms of hemolysis. A genetic screen revealed that swrW is necessary for the hyper-hemolysis phenotype of crp mutants. The swrW gene is required for biosynthesis of the biosurfactant serratamolide, previously shown to be a broad-spectrum antibiotic and to contribute to swarming motility. Multicopy expression of swrW or mutation of the hexS transcription factor gene, a known inhibitor of swrW expression, led to an increase in hemolysis. Surfactant zones and expression from an swrW-transcriptional reporter were elevated in a crp mutant compared to the wild type. Purified serratamolide was hemolytic to sheep and murine red blood cells and cytotoxic to human airway and corneal limbal epithelial cells in vitro. The swrW gene was found in the majority of contact lens isolates tested. Genetic and biochemical analysis implicate the biosurfactant serratamolide as a hemolysin. This novel hemolysin may contribute to irritation and infections associated with contact lens use. © 2012 Shanks et al
- …