6,213 research outputs found
The cosmic ray interplanetary radial gradient from 1972 - 1985
It is now established that the solar modulation of cosmic rays is produced by turbulent magnetic fields propagated outward by the solar wind. Changes in cosmic ray intensity are not simultaneous throughout the modulation region, thus requiring time dependent theories for the cosmic ray modulation. Fundamental to an overall understanding of this observed time dependent cosmic ray modulation is the behavior of the radial intensity gradient with time and heliocentric distance over the course of a solar modulation cycle. The period from 1977 to 1985 when data are available from the cosmic ray telescopes on Pioneer (P) 10, Voyager (V) 1 and 2, and IMP 8 spacecraft is studied. Additional data from P10 and other IMP satellites for 1972 to 1977 can be used to determine the gradient at the minimum in the solar modulation cycle and as a function of heliocentric distance. All of these telescopes have thresholds for protons and helium nuclei of E 60 MeV/nucleon
Monte Carlo simulation of baryon and lepton number violating processes at high energies
We report results obtained with the first complete event generator for
electroweak baryon and lepton number violating interactions at supercolliders.
We find that baryon number violation would be very difficult to establish, but
lepton number violation can be seen provided at least a few hundred L violating
events are available with good electron or muon identification in the energy
range 10 GeV to 1 TeV.Comment: 40 Pages uuencoded LaTeX (20 PostScript figures included),
Cavendish-HEP-93/6, CERN-TH.7090/9
The intensity recovery of Forbush-type decreases as a function of heliocentric distance and its relationship to the 11-year variation
Recent data indicating that the solar modulation effects are propagated outward in the heliospheric cavity suggest that the 11-year cosmic ray modulation can best be described by a dynamic time dependent model. In this context an understanding of the recovery characteristics of large transient Forbush type decreases is important. This includes the typical recovery time at a fixed energy at 1 AU as well as at large heliocentric radial distances, the energy dependence of the recovery time at 1 Au, and the dependence of the time for the intensity to decrease to the minimum in the transient decreases as a function of distance. These transient decreases are characterized by their asymmetrical decrease and recovery times, generally 1 to 2 days and 3 to 10 days respectively at approx. 1 AU. Near earth these are referred to as Forbush decreases, associated witha shock or blast wave passage. At R equal to or greater than + or - 10 AU, these transient decreases may represent the combined effects of several shock waves that have merged together
NHS Direct: consistency of triage outcomes
OBJECTIVES: To examine the consistency of triage outcomes by nurses using four types of computerised
decision support software in NHS Direct.
METHODS: 119 scenarios were constructed based on calls to ambulance services that had been
assigned the lowest priority category by the emergency medical dispatch systems in use. These
scenarios were presented to nurses working in four NHS Direct call centres using different computerised
decision support software, including the NHS Clinical Assessment System.
RESULTS: The overall level of agreement between the nurses using the four systems was “fair” rather than
“moderate” or “good” (k=0.375, 95% CI: 0.34 to 0.41). For example, the proportion of calls triaged
to accident and emergency departments varied from 22% (26 of 119) to 44% (53 of 119). Between
21% (25 of 119) and 31% (37 of 119) of these low priority ambulance calls were triaged back to the
999 ambulance service. No system had both high sensitivity and specificity for referral to accident and
emergency services.
CONCLUSIONS: There were large differences in outcome between nurses using different software systems
to triage the same calls. If the variation is primarily attributable to the software then standardising on a
single system will obviously eliminate this. As the calls were originally made to ambulance services and
given the lowest priority, this study also suggests that if, in the future, ambulance services pass such
calls to NHS Direct then at least a fifth of these may be passed back unless greater sensitivity in the
selection of calls can be achieved
Cosmic ray isotope measurements with a new Cerenkov X total energy telescope
Measurements of the isotopic composition of cosmic nuclei with Z = 7-20 are reported. These measurements were made with a new version of a Cerenkov x total E telescope. Path length and uniformity corrections are made to all counters to a RMS level 1%. Since the Cerenkov counter is crucial to mass measurements using the C x E technique - special care was taken to optimize the resolution of the 2.4 cm thick Pilot 425 Cerenkov counter. This counter exhibited a beta = 1 muon equivalent LED resolution of 24%, corresponding to a total of 90 p.e. collected at the 1st dynodes of the photomultiplier tubes
Cosmic ray charge and energy spectrum measurements using a new large area Cerenkov x dE/dx telescope
In September, 1981, a new 0.5 square meter ster cosmic ray telescope was flown to study the charge composition and energy spectrum of cosmic ray nuclei between 0.3 and 4 GeV/nuc. A high resolution Cerenkov counter, and three dE/dx measuring scintillation counters, including two position scintillators were contained in the telescope used for the charge and energy spectrum measurements. The analysis procedures did not require any large charge or energy dependent corrections, and absolute fluxes could be obtained to an accuracy approximately 5%. The spectral measurements made in 1981, at a time of extreme solar modulation, could be compared with measurements with a similar telescope made by our group in 1977, at a time of minimum modulation and can be used to derive absolute intensity values for the HEAO measurements made in 1979 to 80. Using both data sets precise energy spectra and abundance ratios can be derived over the entire energy range from 0.3 to greater than 15 GeV/nuc
Clathrate formation and dissociation in vapor/water/ice/hydrate systems in SBA-15, sol-gel and CPG porous media, as probed by NMR relaxation, novel protocol NMR cryoporometry, neutron scattering and ab initio quantum-mechanical molecular dynamics simulation
The Gibbs-Thomson effect modifies the pressure and temperature at which clathrates occur, hence altering the depth at which they occur in the seabed. Nuclear magnetic resonance (NMR) measurements as a function of temperature are being conducted for water/ice/ hydrate systems in a range of pore geometries, including templated SBA-15 silicas, controlled pore glasses and sol-gel silicas. Rotator-phase plastic ice is shown to be present in confined geometry, and bulk tetrahydrofuran hydrate is also shown to probably have a rotator phase. A novel NMR cryoporometry protocol, which probes both melting and freezing events while avoiding the usual problem of supercooling for the freezing event, has been developed. This enables a detailed probing of the system for a given pore size and geometry and the exploration of differences between hydrate formation and dissociation processes inside pores. These process differences have an important effect on the environment, as they impact on the ability of a marine hydrate system to re-form once warmed above a critical temperature. Ab initio quantum-mechanical molecular dynamics calculations are also being employed to probe the dynamics of liquids in pores at nanometric dimensions
Effects of invisible particle emission on global inclusive variables at hadron colliders
We examine the effects of invisible particle emission in conjunction with QCD
initial state radiation (ISR) on quantities designed to probe the mass scale of
new physics at hadron colliders, which involve longitudinal as well as
transverse final-state momenta. This is an extension of our previous treatment,
arXiv:0903.2013, of the effects of ISR on global inclusive variables. We
present resummed results on the visible invariant mass distribution and compare
them to parton-level Monte Carlo results for top quark and gluino
pair-production at the LHC. There is good agreement as long as the visible
pseudorapidity interval is large enough (eta ~ 3). The effect of invisible
particle emission is small in the case of top pair production but substantial
for gluino pair production. This is due mainly to the larger mass of the
intermediate particles in gluino decay (squarks rather than W-bosons). We also
show Monte Carlo modelling of the effects of hadronization and the underlying
event. The effect of the underlying event is large but may be approximately
universal.Comment: 22 pages, expanded sections and other minor modifications. Version
published in JHE
- …