7,458 research outputs found

    P2Y₂ Nucleotide Receptors Expressed Heterologously in Sympathetic Neurons Inhibit Both N-Type Ca²⁺ and M-Type K⁺ Currents

    Get PDF
    The P2Y₂ receptor is a uridine/adenosine triphosphate (UTP/ATP)-sensitive G-protein-linked nucleotide receptor that previously has been reported to stimulate the phosphoinositide signaling pathway. Messenger RNA for this receptor has been detected in brain tissue. We have investigated the coupling of the molecularly defined rat P2Y₂ receptor to neuronal N-type Ca²⁺ channels and to M-type K⁺ channels by heterologous expression in rat superior cervical sympathetic (SCG) neurons. After the injection of P2Y₂cRNA, UTP inhibited the currents carried by both types of ion channel. As previously reported [Filippov AK, Webb TE, Barnard EA, Brown DA (1997) Inhibition by heterologously expressed P2Y₂nucleotide receptors of N-type calcium currents in rat sympathetic neurones. Br J Pharmacol 121:849–851], UTP inhibited the Ca²⁺ current (I_{Ca(N)} by up to 64%, with an IC₅₀ of ∼0.5 μm. We now find that UTP also inhibited the K⁺_{M} current (I_{K(M)} by up to 61%, with an IC₅₀ of ∼1.5 μm. UTP had no effect on either current in neurons not injected with P2Y₂ cRNA. Structure–activity relations for the inhibition of I_{Ca(N)} and I_{K(M)} in P2Y₂ cRNA-injected neurons were similar, with UTP ≥ ATP > ITP ≫ GTP,UDP. However, coupling to these two channels involved different G-proteins: pretreatment withPertussis toxin (PTX) did not affect UTP-induced inhibition of I_{K(M)} but reduced inhibition of I_{Ca(N)} by ∼60% and abolished the voltage-dependent component of this inhibition. In unclamped neurons, UTP greatly facilitated depolarization-induced action potential discharges. Thus, the single P2Y₂ receptor can couple to at least two G-proteins to inhibit both Ca²⁺_{N} and K⁺_{M} channels with near-equal facility. This implies that the P2Y₂ receptor may induce a broad range of effector responses in the nervous system

    On the Exploitation of Ground Heat Using Transportation Infrastructure

    Get PDF
    AbstractThe use of shallow geothermal energy systems that employ heat-exchange loops within trenches and boreholes is well established. The use of civil engineering structures that are in contact with the ground (geo-structures) to replace the more conventional heat-exchange methods is creating great interest in many countries. Bearing piles have been used for this purpose since the mid-1980s, retaining walls since the late-1990s and the use of tunnels has been explored since the early-2000s. With regards to transportation infrastructure shallow geothermal may be used to provide renewable heating and cooling to the infrastructure itself or adjacent users, or even to enhance safety by providing e.g. heat to de-ice bridges, station platforms, airport run-ways and the like. This paper presents an overview of the potential application energy geo-structures in transportation infrastructure through case studies and numerical simulations, and then goes on to discuss some of the issues associated with the potential use of geo-structures for heat exchange, in terms of construction, thermal operation and the impact of heating and cooling on the geo-structure

    High frequency in-core acousto-optic modulation of a suspended core optical fibre

    Get PDF
    The confinement of high frequency acoustic waves inside a suspended core fibre (SCF) is numerically investigated for the first time. A 500 μm long acoustic cavity, based on a four-hole SCF, is designed, simulated and evaluated by using the finite element method. The cavity is acoustically excited in the frequency range of 50 - 56 MHz and the induced displacements are integrated along the fibre. A standard single mode fibre is simulated under the same conditions for comparison. The results show strong Lamb acoustic modes oscillating in the silica bridges and overlapping in the SCF core at the resonance of 52.84 MHz. The induced displacement achieves a maximum in the core centre decaying to an almost null value in the cladding. The acoustic wave concentration in the SCF core is 13 times higher compared to the standard fibre, indicating a promising solution to overcome the frequency limitation of the current all-fibre acousto-optic devices. The modulation efficiency is increased without reducing the fibre diameter, making the devices more stable, fast and suitable to modulate all-fibre lasers

    Detailed spatial-spectral numerical characterization of axially symmetric broadband ultrasonic resonances in standard optical fibers

    Get PDF
    Standard single mode optical fibers (SMFs) have been widely employed to generate and measure ultrasonic signals in remarkable applications. In particular, optoacoustic fiber sensors provide unique features for microscale high resolution ultrasound imaging in biomedicine. However, at specific resonance frequencies, SMFs work as acoustic filters inducing relevant geometrical attenuation bands higher than 10 dB, which limit the sensors’ sensitivity and frequency operation, causing image distortions and artifacts. We have numerically demonstrated high frequency axially symmetric ultrasonic resonances inside an optical fiber for the first time. The propagation of resonant axially symmetric acoustic modes along 1 cm fiber is investigated by means of 2D and 3D finite element techniques up to 80 MHz. The dispersion of the modes and induced beatlengths are characterized from the complex multimode interference with the 2D Fourier transform. The simulated spectra are validated with the renowned Pochhammer-Chree analytical equations. The frequency response of the acoustically induced strains in the fiber core is evaluated, and important acoustic parameters relevant for the modulation of phase, wavelength and power in optical fibers and diffractive gratings are derived and discussed. The results show that these resonances are strongly dependent on the modal beatlengths. Solutions to improve the operation of fiber-based devices are proposed, pointing out new alternatives to advance broadband optoacoustic sensors and monolithic acousto-optic modulators

    Finite element numerical investigation of multimode ultrasonic interference and beatlengths in high frequency fiber-optic devices: 3D design, modeling, and analysis

    Get PDF
    A novel numerical study based on the finite element method is developed to demonstrate the beatlengths induced by high frequency acoustic modes inside an optical fiber for the first time. A practical methodology to model, compute and analyze the multimode interaction in the fiber is exemplified with a detailed numerical experiment. The frequency response of 1 mm long standard fiber is evaluated from 30 to 60 MHz, corresponding to the highest attenuation band of experimental fiber optoacoustic devices. The 3D simulated complex ultrasonic fields are decomposed and characterized with the averaged peak-to-peak method and 2D Fourier transform. The resulting dispersion spectra are compared and theoretically validated by the recognized Pochhammer-Chree solutions. The acoustic parameters required to modulate optical fibers are derived from the simulations and discussed. A route to overcome the frequency-induced limitations of the current devices is provided, pointing out new research possibilities for the development of highly efficient and compact all-fiber acousto-optic modulators and fiber-optic ultrasonic sensors

    Life history of the coppertail skink (Ctenotus taeniolatus)in southeastern australia

    Full text link
    © 2020. David A. Pike All Rights Reserved. —The global decline of reptiles is a serious problem, but we still know little about the life histories of most species, making it difficult to predict which species are most vulnerable to environmental change and why they may be vulnerable. Life history can help dictate resilience in the face of decline, and therefore understanding attributes such as sexual size dimorphism, site fidelity, and survival rates are essential. Australia is well-known for its diversity of scincid lizards, but we have little detailed knowledge of the life histories of individual scincid species. To examine the life history of the Coppertail Skink (Ctenotus taeniolatus), which uses scattered surface rocks as shelter, we estimated survival rates, growth rates, and age at maturity during a three-year capture-mark-recapture study. We captured mostly females (>84%), and of individuals captured more than once, we captured 54.3% at least twice beneath the same rock, and of those, 64% were always beneath the same rock (up to five captures). Our growth model estimated that males can reach sexual maturity in as few as 8 mo, whereas females delay maturity until they reach 17 or more months of age. The large body size of females in our population suggests that many individuals were three or more years old. Average monthly survival rate was 86%, which is within the range reported for lizard species in other families. We now have a baseline with which to compare the life histories of other populations of this widespread species, which ranges from temperate to tropical environments. These findings also provide a baseline for examining effects of disturbance or environmental change on life-history traits
    corecore