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INTRODUCTION 

 

CSCL researchers are often interested in the processes that unfold between learners in 

online learning environments and the outcomes that stem from these interactions. However, 

studying collaborative learning processes is not an easy task. Researchers have to make quite 

a few methodological decisions such as how to study the collaborative process itself (e.g., 

develop a coding scheme or a questionnaire), on the appropriate unit of analysis (e.g., the 

individual or the group), and which statistical technique to use (e.g., descriptive statistics, 

analysis of variance, correlation analysis). Recently, several researchers have turned to 

multilevel analysis (MLA) to answer their research questions (e.g., Cress, 2008; De Wever, 

Van Keer, Schellens, & Valcke, 2007; Dewiyanti, Brand-Gruwel, Jochems, & Broers, 2007; 

Schellens, Van Keer, & Valcke, 2005; Strijbos, Martens, Jochems, & Broers, 2004; 

Stylianou-Georgiou, Papanastasiou, & Puntambekar, chapter #). However, CSCL studies that 

apply MLA analysis still remain relatively scarce. Instead, many CSCL researchers continue 

to use ‘traditional’ statistical techniques (e.g., analysis of variance, regression analysis), 

although these techniques may not be appropriate for what is being studied. An important aim 

of this chapter is therefore to explain why MLA is often necessary to correctly answer the 

questions CSCL researchers address. Furthermore, we wish to highlight the consequences of 

failing to use MLA when this is called for, using data from our own studies. 

 

 

MULTILEVEL ANALYSIS: A ‘NEW’ METHODOLOGICAL APPROACH IN CSCL 

RESEARCH 
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Over the last 5 years or so, multilevel analysis (MLA) has been adopted by several 

CSCL researchers to answer their research questions, because MLA is especially suited to 

“appropriately grasp and disentangle the effects and dependencies on the individual level, the 

group level, and sometimes the classroom level” (Strijbos & Fischer, 2007, p. 391). Although 

MLA is a relatively ‘new’ technique, especially to CSCL researchers, its development 

already began in the 1980’s (Snijders & Bosker, 1999) and is since then used in several 

research disciplines. 

MLA was initially embraced by educational researchers interested in school 

effectiveness research because it is well suited to the type of datasets they analyze. Consider, 

for example, an educational researcher interested in the effect of class size (i.e., the 

independent variable) on student achievement (i.e., the dependent variable). To investigate 

this effect, he or she would collect data about class sizes in different schools, as well as data 

on student achievement (e.g., standardized test scores on language, mathematics, and so on). 

However, such a research question poses several problems. First, this research question yields 

a hierarchically nested dataset with students nested within classrooms, and with classrooms 

nested within schools (and if this was an international study, even with schools nested within 

countries). Furthermore, the researcher would encounter the problem of nonindependence of 

his/her dependent variable of interest. Many statistical techniques (e.g., t-test, analysis of 

variance, regression analysis), assume that the achievement scores (or other dependent 

variables) of the students in the dataset are independent from each other (Hox, 2003; Kashy 

& Kenny, 2000; Snijders & Bosker, 1999). In the example just provided, this will probably 

not be the case. Due to a common experience for example (e.g., the teaching they receive by 

their teacher), the scores within one classroom may not be independent at all since the overall 

classroom environment will affect all children in the class and even the behavior of 

individuals in the class will affect the others. Finally, the imaginary educational researcher 
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would have to take into account that his or her variables of interest, class size and student 

achievement, are measured at different levels. Class size is measured at the class level, while 

achievement is measured at the student level. The number of available observations for both 

variables differs (i.e., the number is smaller for class size than for achievement). To properly 

address these issues, MLA was developed, and since then it became an important technique 

for school effectiveness research (Bosker & Snijders, 1990; De Leeuw & Kreft, 1986). 

Social psychologists have also acknowledged the analytical problems described 

above. They are frequently interested in how individuals’ thoughts and behaviors are 

influenced by other people. Many social psychological concepts involve two or more persons 

(e.g., attraction, interactive behavior, marital satisfaction) and thus the behavior of individuals 

within a group is often the focus of study (Kashy & Kenny, 2000). A social psychologist 

might for example be interested in how the division of household chores (i.e., the 

independent variable) affects marital satisfaction (i.e., the dependent variable). To answer this 

question, the researcher would have to observe married couples and record who did which 

chore (and calculate for example a ratio), and to administer a questionnaire to both spouses to 

measure their marital satisfaction. From this example it becomes clear the social psychologist 

encounters the same problems as the educational researcher does. Both encounter the 

problem of hierarchically nested datasets (in this case individuals nested within couples), 

both involve variables at different levels of measurement (in this case the household chores 

ratio is measured at the level of the couple, whereas marital satisfaction is measured at the 

level of the individual), and in both cases the observations of the dependent variable are 

probably not independent (in this case there might even be a negative relationship: the 

husband may be more satisfied if he does little housework, while this may negatively affect 

the marital satisfaction of his wife).  
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The problem of statistical nonindependence of dependent variables (i.e., group 

members exerting a psychological influence on each other) has received considerable 

attention in social psychology since the 1980’s (e.g., Bonito, 2002; Kenny, 1995, 1996; 

Kenny & Judd, 1986; Kenny & Judd, 1996) but less so in CSCL research (notable exceptions 

are for example, Cress, 2008; Strijbos et al., 2004; Stylianou-Georgiou et al., see chapter #). 

It is therefore not surprising that social psychologists frequently use MLA to deal with these 

issues (cf., Bonito & Lambert, 2005; Campbell & Kashy, 2002; Kenny, Mannetti, Pierro, 

Livi, & Kashy, 2002), while this technique is less often used in CSCL research.  

 

 

THE PROBLEMS CSCL RESEARCHERS ENCOUNTER 

 

Similar to other research disciplines, CSCL researchers encounter the 

abovementioned problems of hierarchically nested datasets, nonindependence of dependent 

variables, and differing units of analysis. We explain these problems below. 

 

Hierarchically Nested Datasets 

In CSCL-environments, students work in groups. Studying online collaboration 

therefore often involves investigating group processes and how these processes are affected 

by contextual factors (e.g., the environment itself, the composition of the group, prior 

knowledge and experiences of the group members). It is not difficult to understand this leads 

to hierarchically nested datasets, since groups consist of two or more individuals and thus in 

these cases individuals are nested within groups. In many cases, CSCL researchers will 

encounter at least two levels: the group and the individual. The group is then the macro- or 

level-2 unit and the individual the micro- or level-1 unit (Hox, 2003; Snijders & Bosker, 
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1999). CSCL researchers may also use datasets that have even more levels of analysis. A 

researcher might for example be interested in the effects of the teacher’s experience with 

CSCL on the way his or her students collaborate online. This researcher will have a dataset 

with three levels: students are nested within groups, while groups are nested within teachers’ 

classrooms. Another CSCL researcher might be interested in the development of students’ 

online interactive behavior over time. This researcher would therefore collect data about 

students’ interactive behavior on different measurement occasions. This would also lead to a 

dataset with three levels: measurement occasions are nested within students, and students are 

nested within groups (Kenny, Kashy, & Cook, 2006; Snijders & Bosker, 1999). Whenever 

researchers encounter datasets with hierarchically nested data, MLA is needed to 

appropriately model this data structure since it can appropriately disentangle the effects of the 

different levels on the dependent variable(s) of interest (Snijders & Bosker). 

 

Nonindependence of Dependent Variables 

Because their participants work in groups, CSCL researchers also encounter the 

problem of nonindependence of their dependent variables (Cress, 2008). This means students 

within a group may be more similar to each other than are persons from different groups 

(Kenny et al., 2002). In the case of CSCL, the main source of this nonindependence is the 

mutual influence group members have on each other (Bonito, 2002; Kenny, 1996). In our 

own studies, which we describe in detail later on in this chapter, students could discuss with 

each other through a Chat-window and a Forum. Through these discussions, students 

influenced each other. In some cases for example, a student displayed negative behavior, and 

this prompted the other group members to respond negatively as well. Furthermore, some 

students in our studies were very active in the Chat conversations (e.g., they proposed a lot of 

strategies and asked a lot of questions). This could have triggered the other group members to 
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also become more active in the chat as well. Such an influence of students on their group 

members’ communication and behavior is nearly always present in CSCL research, because 

in CSCL-environments students communicate and collaborate to solve complex problems 

(Kreijns, Kirschner, & Jochems, 2003). 

This reciprocal influence of group members is not necessarily positive, it can also be 

negative. In the previously mentioned example concerning active group members stimulating 

other group members to be more active, the reverse could also happen: When one group 

member is very active in the learning environment, this may trigger other group members to 

“sit back” and do little since that other group member is doing so much (O'Donnell & 

O'Kelly, 1994; Webb & Palincsar, 1996). Kenny et al. (2002) therefore noted that mutual 

influence can not only cause students to behave more similarly, but may also cause students 

to behave differently from their group members. This is called the boomerang effect (Kenny 

et al., 2006). Another example is that when group members behave negatively, a student may 

decide to counter this by displaying more positive behavior. Role assignment (cf., Schellens 

et al., 2005; Strijbos et al., 2004; Strijbos, Martens, Jochems, & Broers, 2007) may also lead 

to differential behavior. If one group member, for example, is given the task to ask critical 

questions, while the other group member has to monitor task progress, this may lead to 

differing behavior (e.g., the first student will ask many questions, but will display less 

metacognitive behavior, while the second student may display high levels of metacognitive 

behavior but may ask fewer questions). Kenny et al. therefore make a distinction between 

positive nonindependence where group members influence each other in such a way that they 

behave more similarly and negative nonindependence where group members influence each 

other to behave differently. Thus, since group members influence each other in a group 

context, this will likely lead to either positive or negative nonindependence of the dependent 

variables that are being investigated which in turn has to be dealt with during data analysis. 
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The degree of nonindependence can be estimated using the intraclass correlation 

coefficient1 (ICC, cf., Kashy & Kenny, 2000; Kenny et al., 2002). Values of the ICC can 

range from -1 to +1. An ICC of +1 for satisfaction with the collaborative process (scored on a 

4-point scale ranging from 1 to 4) for example, indicates that when a group member has a 

score of 4 on this measure, the other group members will also have a score of 4. Conversely, 

an ICC of -1 for the same measure indicates that when one student has a score of 4 on this 

measure, his or her partners will have a score of 1.  

An alternative interpretation of the ICC is in terms of the amount of variance that is 

accounted for by the group (Kenny et al., 2006). When the ICC for satisfaction with the 

collaborative process is found to be .40 for example, this means the 40% of the variance in 

this measure is accounted for by the group, and thus that 60% is accounted for by other (e.g., 

individual) factors.  

The dependent measures that CSCL researchers are interested in will often be non-

independent (Cress, 2008). Strijbos et al. (2004) for example, studied the effect of roles on 

perceived group efficiency. They found an ICC of .47, meaning 47% of this measure is 

accounted for by the group. Group members displayed rather similar levels of perceived 

group efficiency, probably due to their common experiences in the CSCL environment. In a 

related study, Strijbos et al. (2007) found a similar influence of group level factors on group 

members’ individual perceptions (ICC = .45). In the two studies described in the chapter by 

Stylianou-Georgiu et al. (chapter #), group level factors explained 11% and 8% of the 

variance respectively. On the other hand, not all researchers find similar substantial amounts 

of variance accounted for by the group. De Wever et al. (2007) for example, report only 3% 

of the students’ level of knowledge construction was linked to the group level. However, 

                                                 

1 For an excellent description on how to compute the ICC for a specific dataset, the reader is referred to Kenny et al. (2006). 
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these examples still illustrate the presence of nonindependence in datasets of CSCL 

researchers. 

Nonindependence needs to be addressed when conducting statistical analyses, because 

it distorts estimates of error variances, thus making standard errors, p-values, and confidence 

intervals invalid when this distortion is not taken into account (Kenny, 1995; Kenny et al., 

2006). Traditional statistical techniques such as t-tests, analyses of variance, and regression 

analyses cannot cope with this distortion because they assume the variables are independent. 

Therefore CSCL researchers using these types of analyses run an increased risk of 

committing Type I or Type II errors (Kashy & Kenny, 2000). Whether the chance to falsely 

reject (Type I error) or falsely accept (Type II error) the null hypothesis is increased, depends 

on the sign of the ICC (either positive or negative), and the type of dependent variable for 

which the ICC was calculated (see Kashy & Kenny for a detailed discussion). 

Like any correlation coefficient, the ICC can be tested for significance. When the ICC 

is significant, its effect is large enough to bias statistical tests as described above (Kenny et 

al., 2006). However, because sample sizes are often small in CSCL research, the ICC may not 

be significant, while it is actually large enough to bias standard errors, p-values and so on. 

Kenny et al. (2002) therefore propose assuming group data are nonindependent even though 

the ICC is not significant. 

 

Differing Units of Analysis 

A final problem that CSCL researchers encounter concerns the differing units of 

analysis their datasets often contain. This has to do with the abovementioned hierarchical 

structure of their datasets. Some variables that CSCL researchers are interested in are 

measured at the individual level (e.g., gender, interactive behavior, familiarity with other 

group members), whereas other variables are measured at the group level (e.g., gender group 
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composition, group performance, group consensus). Savicki and Kelly (2000) for example, 

studied the effect of gender and gender group composition (male-only, female-only, or 

mixed) on satisfaction with online collaboration. Their dependent variable was measured at 

the individual level (satisfaction), while their two independent variables were measured at the 

both the individual (gender) and group (gender group composition) level. Thus, their dataset 

contained variables with differing units of analysis. 

Another example comes from a study conducted by Schellens, Van Keer, Valcke, and 

De Wever (2007). During their study, students collaborated in asynchronous discussion 

groups. They were interested in the impact of individual variables (e.g., gender, learning 

style) and group variables (active group versus relatively inactive group) on students’ final 

exam scores. Their analyses therefore included independent variables measured at both the 

individual and the group level, while their dependent variable was measured at the level of 

the individual student.  

To be able to cope with the different units of analysis encountered by Savicki and 

Kelly (2000) and Schellens et al. (2007), MLA is needed, because traditional statistical 

techniques cannot properly take these differing units of analysis properly into account (Hox, 

2003; Snijders & Bosker, 1999). 

 

COMMON ANALYSIS STRATEGIES 

 

In this section we describe three strategies that researchers can use to deal with the 

data analytical problems described in the previous sections, namely ignoring 

nonindependence of dependent variables, aggregating or disaggregating data, and MLA.  
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Ignoring Nonindependence 

A first strategy, and also still the most common practice during the analysis of group 

data (Kenny et al., 2002), is to ignore the hierarchical structure of the dataset, the 

nonindependence, and the differing units of analysis and perform statistical techniques such 

as t-tests or (M)ANOVA’s (Cress, 2008). As we discussed previously, this biases 

significance tests of inferential statistics (e.g., t or F-values), sometimes making tests too 

liberal and, and at other times, too conservative. 

Ignoring nonindependence is a frequently encountered approach in CSCL research. 

Francescato et al. (2006) for example, studied differences in students’ evaluations of 

collaboration in online and face-to-face learning groups. Among other things, they 

investigated whether online learning groups perceived differing levels of social presence and 

satisfaction with the collaborative process than face-to-face groups. However, they found no 

differences between online and face-to-face groups using analyses of variance, although there 

was a tendency for online groups to be more satisfied with the collaborative process (p = .17). 

Because this study involves students working in groups, the evaluations of Francescato et 

al.’s students are most likely nonindependent. However, their analyses fail to take 

nonindependence into account, and thus the p-values reported by the authors might be biased. 

This could lead to a false acceptance of the null hypothesis (i.e., no differences between face-

to-face and online learning groups). Using a more appropriate statistical technique, MLA, 

Francescato et al. might have been able to demonstrate significant differences between face-

to-face and online learning groups. 

Another example comes from the work of Guiller and Durndell (2007) who studied 

the effect of gender on students’ linguistic behavior in online discussion groups. Guiller and 

Durndell studied whether male more absolute adverbials (i.e., strong assertions such as 

‘obviously’) and imperatives (i.e., giving commands) than female students. In order to answer 
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this question they coded students’ messages and classified each message in terms of the 

linguistic behavior shown by the students. Guiller and Durndell then used χ2-analyses to 

determine whether male and female students differed with respect to these behaviors. 

Although the authors found male students to use more absolute adverbials and imperatives, 

the corresponding χ 2-values were not significant. However, by using χ 2-analyses they too 

ignored the nonindependence of their dependent variables. Again, group members 

communicated and discussed with each other, so therefore they likely influenced each other. 

Using MLA, Guiller and Durndell, might have been able to detect statistically significant 

differences between male and female students on use of certain linguistic behaviors. 

 

Aggregating or Disaggregating Data 

Another strategy to deal with the problems described in the previous section is to aggregate 

individual data to the level of the group (Snijders & Bosker, 1999). This involves summing 

the scores of the individual group members to create an aggregated group score. 

This strategy is used in a study described by Van der Meijden and Veenman (2005). 

Van der Meijden and Veenman compared dyads using face-to-face (FTF, N = 20) and 

computer-mediated communication (CMC, N = 22) with respect to exchange of high-level 

elaboration (e.g., elaborate explanations or requests for help). Students’ collaboration was 

coded using a coding scheme. However, the percentages of high-level elaboration “were 

calculated by summing the individual code frequencies” (p. 843) and dividing these by the 

total number of utterances. An independent samples t-test was then used to establish whether 

FTF and CMC conditions differed significantly with respect to high-level elaboration. High-

level elaboration was thus treated as a group level variable. Such an analysis however, 

ignores the fact that high-level elaboration is in essence an individual level variable (although 

it may be affected by group level variables). Furthermore, by aggregating to the group level, 
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this analysis uses fewer observations for high-level elaboration than are available. For this 

variable only 20 + 22 = 42 observations are used, while in effect there are 42 * 2 = 84 

observations. Therefore Van der Meijden and Veenman run the risk of committing a Type II 

error. Fortunately, in their study the differences between FTF and CMC were large enough to 

detect a significant difference between FTF and CMC groups with respect to the percentage 

of high-level elaborations exchanged. 

The reverse strategy can also be applied: treating group level data as if they were 

measured at the individual level. This is called disaggregation. Consider for example, the 

study by Savicki, Kelley, and Lingenfelter (1996) about the effects of gender group 

composition on students’ satisfaction with the collaborative process. Group composition was 

measured at the group level (all male, all female, or mixed groups), while satisfaction was 

measured at the individual level (students completed a questionnaire individually). In total, 

their sample consisted of 6 groups and 36 students. Savicki et al. conducted an analysis of 

variance to examine whether group composition affected satisfaction. However, this analysis 

does not take into account that group composition was measured at the group level. Thus, 

Savicki et al.’s analysis uses 36 observations for the group composition variable, while in fact 

there are only 6 observations for this variable. This led to an exaggeration of the actual 

sample size for this variable and increased the chance of committing a Type I error (Snijders 

& Bosker, 1999).   

 

Multilevel Analysis 

MLA was designed specifically to cope with hierarchically nested data (Hox, 2003; 

Snijders & Bosker, 1999). Furthermore, it is a useful technique when researchers use datasets 

that have different units of analysis, such as group and individual level variables (Kenny et 
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al., 2006). Finally, MLA can deal with the nonindependence of observations that results from 

the mutual influence group members have on each other (Snijders & Bosker).  

At present, MLA is slowly finding its way to the CSCL research community: more 

and more CSCL researchers are using MLA to analyze their data. In the previously 

mentioned study of Strijbos et al. (2004), two conditions were present: a condition in which 

specific roles (e.g., project planner, editor) were assigned to students and a condition without 

role assignment. Thus, condition was a group level independent variable. Perceived group 

efficiency was measured using several questionnaires, and was therefore an individual level 

dependent variable. It is not difficult to see that in the Strijbos et al. study hierarchically 

nested data were collected since students were nested in groups. Furthermore, their study 

employed variables measured at different units of analysis. Finally, as we previously 

mentioned, nonindependence was present in their dataset, since they reported an ICC of .47 

for perceived group efficiency. Strijbos et al. therefore constructed a ML model with 

perceived group efficiency as dependent variable and condition (role or non-role assignment) 

as an independent variable. Using MLA, they were able to model the nonindependence in 

their datasets and to analyze their dependent and independent variable at their appropriate 

levels of analysis. 

 
 

 

ILLUSTRATION OF PROBLEMS AND ANALYSIS STRATEGIES 

 

In this section we will illustrate more elaborately the three problems (hierarchically 

nested datasets, nonindependence, and differing units of analysis) and strategies for data 

analysis (ignoring nonindependence, aggregating or disaggregating, and MLA) that were 
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described in the previous sections. In order to do so, we utilize data from two different studies 

we conducted to illustrate three examples.  

 

Example 1: Impact of an awareness tool on online discussion 

The first example comes from the data collected for a study described in Janssen, 

Erkens, and Kanselaar (2007). For this study we developed an awareness tool (cf., 

Engelmann, Dehler, Bodemer, & Buder, 2009), called the Shared Space, which visualized the 

amount of agreement or discussion among group members during online synchronous chat 

discussions. We hypothesized that giving students such an awareness tool, would raise their 

awareness about the way they conducted their online discussions. In one condition students 

used the Shared Space (SS) to communicate online, while in the other condition (No SS) the 

students communicated through a regular chat-tool. We examined - amongst others - the 

effect of experimental condition on the number of times students evaluated the social 

interaction positively during their online conversations. 

During this study we encountered the three abovementioned problems. First, because 

in this study students worked in groups, we had a hierarchically nested dataset. Furthermore, 

we found an ICC of .41 for our dependent variable, indicating a considerable influence of the 

group on this variable and the presence of nonindependence. In this study we also 

encountered the problem of differing units of analysis. Our dependent variable, the number of 

positive evaluations communicated by the students, was measured at the level of the 

individual. Because the group as a whole was assigned to either the SS or No SS condition, 

our independent variable, experimental condition, was measured at the level of the group. 

Moreover, we also wanted to control for students’ level of participation, because some 

students were more active in the online discussions than others. Thus, our analysis also 

included a covariate, also measured at the level of the individual. 
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As we described before, we have three options when analyzing our data. If we chose 

the first option, ignoring nonindependence, we could use regression analysis to answer the 

question whether the Shared Space had an effect on the number of times students evaluated 

the collaboration positively. In this regression analysis, we include number of positive 

evaluations of the collaboration a student typed in the Chat-tool as a dependent variable and 

condition (effect coded with Shared Space as +1 and No Shared Space as -1) as an 

independent variable. Furthermore, we also include participation (e.g., the total number of 

messages students sent) in the regression equation to control for the fact that some students 

were more active during the online collaboration than others. As can be seen in Table 1, we 

find no effect of condition (Shared Space or No Shared Space) using this regression model on 

positive evaluations of the collaboration, B = 0.20, SE = 0.14, p = .08 (one-tailed 

significance). Thus, if we adopt a strategy that ignores nonindependence, we would conclude 

that the Shared Space does not influence the number of positive evaluations of their 

collaboration typed by students.  

 

Table 1: Regression analysis of the effect of the Shared Space on number of positive 

evaluations of the collaborative process typed in the Chat-tool. 

 B SE B β 
Condition (-1 = No SS, +1 = SS) 0.202 0.142 .131 
Participation 0.001 0.001 .140 

 

If we chose the second option, namely to aggregate our data, we could calculate the 

sum of positive evaluations of the collaboration for each group. On average, Shared Space 

groups exchanged 2.25 (SD = 3.16) positive evaluations of the collaboration, while No 

Shared Space groups exchanged only 1.00 (SD = 1.95) of these messages. Again, we could 

then use a regression analysis to examine the effects of condition (Shared Space or No Shared 

Space) on the number of positive evaluations of the collaborative process exchanged by the 
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group. This regression analysis includes number of positive evaluations as the dependent 

variable, condition as the independent variable, and again level of participation (i.e., the total 

number of messages sent by the whole group) as a control measure. The results of the 

regression analysis are displayed in Table 2. As can be seen, condition was not found to have 

a significant impact on the number of positive evaluations of the collaborative process sent, 

B = 1.20, SE = 0.83, p = .06. This yields a conclusion comparable to the previously described 

strategy of ignoring nonindependence: the Shared Space does not have an influence on the 

amount of positive evaluations of the collaborative process exchanged during online 

collaboration. 

 

Table 2: Regression analysis of the effect of the Shared Space on number of positive 

evaluations of the collaborative process typed in the Chat-tool by the group. 

 B SE B β 
Condition (-1 = No SS, +1 = SS) 1.202 0.830 .228 
Participation 0.001 0.001 .166 

 

Our final option is to use multilevel analysis to study the effects of the Shared Space 

on students’ use of positive evaluations of the collaboration. In our study, we constructed a 

ML model that included number of times a student typed a positive evaluation of the 

collaboration as a dependent variable and condition (Shared Space or No Shared Space) as an 

independent variable. Furthermore, we included participation (e.g., total number of messages 

sent) again to control for the fact that some students typed more messages than other students. 

As can be seen in Table 3, we found a significant effect of the Shared Space on the number of 

positive evaluations of the collaboration students typed, β = 0.20, SE = .14, p = .04 (one-

tailed significance). Although the differences in p-values are small (see Table 4) and the 

differences may not seem spectacular, this last analysis strategy leads to a different 

conclusion than ignoring nonindependence or aggregating data, namely that the Shared Space 
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affects the number of positive evaluations of the collaboration. Thus, in this case MLA 

prevented us from making a Type II error (i.e., falsely accepting the null hypothesis). 

 

Table 3: Multilevel analysis of the effect of condition (Shared Space or No Shared Space) on 

number of positive evaluations of the collaborative process exchanged. 

 β SE 
Participation 0.01* 0.00 
Condition (SS or No SS) 0.20* 0.14 
   
Deviance 429.14  
Decrease in deviance 2.06*  

* p < .05. 
 

Table 4: Summary of differing results for effects of Shared Space on students’ positive 

evaluations of the collaborative process. 

 
Ignoring 
nonindependence 

Aggregating data Multilevel analysis 

Statistical analysis 
 

Regression analysis Regression analysis MLA 

Significance of 
effect of condition 
 

Not significant,  
p = .08 

Not significant,  
p = .08 

Significant,  
p = .04 

Conclusion No effect of Shared Space 
on positive evaluations of 
collaborative process 

No effect of Shared Space 
on positive evaluations of 
collaborative process 

Positive effect of Shared 
Space on positive 
evaluations of 
collaborative process 

 

Example 2: Influence of representational guidance on student learning 

Our second example comes from a study reported in Janssen, Erkens, Kirschner, and 

Kanselaar (in press). In this study we investigated the effects of representational guidance 

(cf., Suthers, 2001; Suthers & Hundhausen, 2003) on students’ performance on a knowledge 

post-test. Our design used two conditions: In one condition students used a Graphical Debate-

tool to construct external representations of a historical debate, while in the other condition 

students used a Textual Debate-tool to construct such representations. Both versions of the 

tool differed with respect to the representational guidance they offered to the students. The 

Graphical Debate-tool made extensive use of visualization techniques to visualize certain 
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aspects of the collaborative problem solving process (e.g., Was there a balance between the 

number of arguments pertaining to both positions?). We hypothesized that the 

representational guidance offered by the Graphical Debate-tool would positively affect 

students’ post-test performance. 

Again we encountered the previously mentioned problems during our study. In this 

study too, students worked in groups, which created a hierarchically nested dataset. When 

we calculated the ICC of our dependent variable, post-test performance, we found an ICC of 

.32. This meant that 32% of the total variance was explained by group level variables and that 

the assumption of independence was violated. Finally, the variables we studied were 

measured at different units of analysis. Post-test performance, our dependent variable, was 

measured at the level of the student. In contrast, our independent variable, experimental 

condition (Graphical versus Textual Debate-tool) was measured at the level of the group, 

because each group was assigned to one of the two conditions. Finally, our analyses also 

included a covariate, pretest performance, which was again measured at the individual level. 

If we chose to ignore nonindepence when analyzing the effects of the Graphical 

Debate-tool on students’ post-test performance, we could use analysis of covariance 

(ANCOVA). The ANCOVA model would include post-test performance as the dependent 

measure of interest, condition (Graphical versus Textual Debate-tool) as the independent 

variable, and pre-test performance as a covariate. The results of this analysis can be found in 

Table 5. As can be seen in this Table, condition had a significant impact on post-test 

performance, F(1, 82) = 3.98, p = .05. In conclusion, if we adopt a strategy that ignores 

nonindependence, we would conclude that condition has a significant impact on post-test 

performance. 
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Table 5: Analysis of covariance for condition (Graphical versus Textual Debate-tool) on 

post-test performance. 

 df MS F η2 
Pretest performance (Covariate) 1 39.14 11.11** .12 
Condition (Graphical or  Textual Debate) 1 14.07 3.98* .05 
Error 82 3.55  

* p < .05. ** p < .01. 
 

Our second option would be to aggregate our data. This involves computing, for each 

group, the average post- and pre-test score of the individual group members. Using such a 

strategy, we find Graphical Debate groups to attain, on average, a post-test score of 13.02, 

while Textual Debate groups attain a an average score of 12.24. To test the effect of condition 

on post-test performance, we could again conduct an analysis of covariance, using post-test 

performance as the dependent variable, condition as the independent variable, and pre-test 

performance as a covariate. The results of this analysis are displayed in Table 6. As can be 

seen, the effects of condition are not significant if we adopt an aggregation strategy, 

F(1, 37) = 0.28, p = .61. This means we would conclude, in contrast to the previous strategy 

of ignoring nonindependence, the Graphical Debate-tool does not have a positive effect on 

students’ post-test performance. 

 

Table 6: Analysis of covariance for condition (Graphical versus Textual Debate-tool) on 

group level variables. 

 df MS F η2 
Pretest performance (Covariate) 1 11.39 6.27** .28 
Condition (Graphical or Textual Debate) 1 0.50 0.28 .02 
Error 37 1.82   

** p < .01. 
 

Our final option is to conduct a multilevel analysis. Our ML model then includes 

students’ pre-test performance and condition (Graphical versus Textual Debate-tool). The 

results of this analysis can be found in Table 7. We found a significant effect of condition on 
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post-test performance, indicating that the Graphical Debate-tool helped students to perform 

better on the knowledge post-test, β = 0.42, SE = .22, p = .03. 

 

Table 7: Multilevel analysis of the effect of condition (Graphical or Textual Debate-tool) on 

post-test performance. 

 β SE 
Pre-test performance 0.28** 0.10 
Condition (Graphical or Textual) 0.42* 0.22 
   
Deviance 344.63  
Decrease in deviance 11.07**  

* p < .05. ** p < .01. 
 

Table 8 summarizes the results of the different analysis strategies. As can be seen, the 

p-values are different if one strategy is chosen rather than another strategy. Especially when 

an aggregation strategy is chosen for the evaluation of the effect of the Graphical Debate-

tool, a difference is noticeable. When we analyzed aggregated data we would draw a different 

conclusion – the Graphical Debate-tool does not affect post-test performance – compared to 

ignoring nonindependence or using MLA. This again highlights the importance of carefully 

using the appropriate data analysis strategy. 

 

Table 8: Summary of differing results for effects of Graphical Debate-tool on students’ post-

test performance. 

 
Ignoring 
nonindependence 

Aggregating data Multilevel analysis 

Statistical analysis 
 

Analysis of covariance Analysis of covariance MLA 

Significance of effect of 
condition 
 

Significant,  
p = .05 

Not significant,  
p = .61 

Significant,  
p = .03 

Conclusion Positive effect of 
Graphical Debate-tool 
on post-test performance 

No effect of Graphical 
Debate-tool on post-test 
performance. 

Positive effect of 
Graphical Debate-tool 
on post-test performance 
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Example 3: Influence of representational guidance on essay quality 

The study described in the previous example also provides the opportunity to 

highlight the effects of using a disaggregation strategy. Besides post-test performance, we 

also examined the effects of the Graphical Debate-tool on the quality of the essays written by 

groups. This effect was examined by measuring the number of topics covered in the essay 

and the quality of the essay. Because the essays were written by groups, this variable was a 

group-level measure: each group received one score for number of topics covered and quality 

of the essay. Thus, multilevel analysis is not necessary. However, in this could we could also 

have adopted a disaggregation strategy. This means each student within the group is given the 

same score for these two quality indicators. This leads to an increase of the sample size from 

39 groups to 124 students. In Janssen et al. (in press), using t-tests, we found no significant 

differences with respect to the number of topics covered, t = -0.55, p = .59, and quality of the 

essay, t = 2.00, p = .06. However, when we disaggregate our data, and then use t-tests to 

examine the differences between the Graphical and Textual Debate tool, we find different t- 

and p-values, namely for number of topics covered, t = -1.38, p = .17, and for essay quality, 

t = 3.24, p = .00. This example shows that using a disaggregation strategy might lead to 

biased t- and p-values and even different conclusions (i.e., in the case of essay quality the 

conclusion would be different). 

 

 

CONCLUSION AND DISCUSSION 

 

In this chapter we discussed the data analytical problems CSCL researchers frequently 

encounter, namely hierarchically nested datasets, nonindependence of dependent variables, 

and differing units of analysis. We argued that, in order to take these problems into account, 
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MLA should be used. We also demonstrated that alternative analysis strategies such as 

ignoring nonindependence or aggregating or disaggregating data can lead to different results 

and possibly to mistakes regarding the significance or non-significance of these results. We 

therefore strongly advocate the use of MLA in CSCL research. Fortunately, more and more 

CSCL researchers are beginning to use this technique to answer their research questions. 

It should be noted that we do not claim that in the cases where CSCL researchers used 

other analyses than MLA their conclusions are wrong. This need not be the case. However, 

these researchers do have an increased chance of committing Type I or Type II errors. We 

hope this chapter will contribute to an increased awareness of the risks of using traditional 

statistical techniques such as t-tests and ANOVAs, and future CSCL research will use MLA 

when this is appropriate. 

Of course not all data-analytic problems that CSCL researchers encounter are solved 

by using MLA. Furthermore, MLA has its own limitations. First, MLA is mostly used when 

the dependent variable is measured at the interval level of measurement. Sometimes however, 

researchers may be interested in dichotomous (e.g., success or failure of group work) or 

categorical dependent variables (e.g., levels of knowledge construction). Although MLA 

techniques have been developed to incorporate these kinds of dependent variables (multilevel 

logistic regression, see Snijders & Bosker, 1999), they are rarely adapted to CSCL data.  

Second, for an adequate analysis of collaborative learning using MLA, it is often 

suggested that large sample sizes at all levels (individual as well as group) are necessary 

(Cress, 2008; Maas & Hox, 2005). Maas and Hox, using a simulation study, demonstrated 

that only a small sample size at the group level (less than 50 groups) is problematic and leads 

to biased estimates. A small sample size at the individual level (groups consisting of five 

group members or less), does not appear to be problematic. This means that, in order to use 

MLA confidently for CSCL data, researchers should collect data about at least 50 groups. 
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CSCL researchers often employ less than 50 groups in their studies. Given the complexity of 

CSCL research and how time-consuming data collection and analysis often are, a sample size 

of at least 50 groups places a heavy burden on CSCL researchers. 

Third, CSCL researchers are often interested in data over time. An example might be 

how familiarity with group members affects trust-development in CSCL environments over 

time. To investigate this question a researcher would collect data about trust levels on 

different occasions. This adds even more problems to analyzing CSCL data. The effects of 

familiarity on trust may not be the same at every measurement occasion (e.g., its effects may 

be greater at the beginning of the collaboration). Furthermore, the level of trust at 

measurement occasion 1 may also have an effect on the level of trust at occasion 2 (if trust 

was high at occasion 1, this may affect trust at occasion 2). This creates a new type of 

nonindependence: autocorrelation (Kenny et al., 2006). Again, MLA techniques have been 

developed to analyze time-series data (cf., Chiu & Khoo, 2003, 2005; Kenny et al., 2006), but 

they are not often used in CSCL research. CSCL researchers should therefore begin to 

investigate the possibilities of using MLA for time-series data. 

Finally, MLA will not be a suitable technique to answer all research questions. Quite 

a lot CSCL research focuses on capturing the interactive processes that unfold between group 

members. In some cases researchers are interested in providing “thick” or “rich” descriptions 

of the collaborative process (Baker, 2003; Hmelo-Silver & Bromme, 2007). In such cases, 

MLA is obviously useless. Furthermore, it has been argued that studying intersubjective 

meaning making or group cognition should be the focus of CSCL research (Stahl, 2006; 

Suthers, 2006). This involves studying “how people make sense of situations and of each 

other” (Suthers,  p. 321). Researchers with such a perspective on CSCL research could object 

to disentangling group and individual aspects of collaborative learning. They would argue 

that in order to understand the collaborative process, the group should be the unit of analysis, 
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not the individual. Again, if one has such an approach to studying CSCL, using MLA will not 

be a sensible strategy.  

Fortunately, over the last years a large body of literature on MLA has been published. 

For the CSCL researcher who finds him- or herself faced with a hierarchically nested dataset 

and nonindependent observations, several good and accessible textbooks on the statistical and 

technical background of MLA are available (e.g., Hox, 2003; Snijders & Bosker, 1999). 

Furthermore, several good articles have been published about how to apply MLA to group 

and CSCL data (e.g., Bonito, 2002; Cress, 2008; Kenny et al., 2006; Kenny et al., 2002) and 

several CSCL articles have been published that can serve as an example (De Wever, 

Schellens, Valcke, & Van Keer, 2006; De Wever et al., 2007; Schellens et al., 2005; 

Schellens et al., 2007; Strijbos et al., 2004, 2007). Finally, several programs specifically 

designed for performing MLA are available, such as MLwiN 

(http://www.cmm.bristol.ac.uk/MLwiN/index.shtml) and HLM 6 

(http://www.ssicentral.com/hlm/index.html). Moreover, the fact that conventional statistical 

software such as SPSS and SAS now incorporate procedures for carrying out MLA means 

that the possibility to perform MLA has become a possibility for many CSCL researchers. 

CSCL research can still make progress by incorporating MLA in its repertoire of 

analysis techniques. It is an encouraging development that CSCL researchers are turning 

toward MLA more often. It is our hope and expectation that this development will continue 

and that CSCL researchers are going to find new ways to deal with the complex data 

analytical problems they are faced with. Ultimately, this will lead to a better understanding of 

how critical features of the CSCL-environment (e.g., support given by the environment), the 

group (e.g., composition), and the individual student (e.g., prior knowledge, motivation) 

affect social interaction and students’ learning processes. Furthermore, when researchers 
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combine MLA with qualitative analyses in a mixed methods design (Leech & Onwuegbuzie, 

2009) an even more complete picture of the CSCL process is possible. 
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