651 research outputs found

    SPR salt wall leaching experiments in lab-scale vessel : data report.

    Get PDF
    During cavern leaching in the Strategic Petroleum Reserve (SPR), injected raw water mixes with resident brine and eventually interacts with the cavern salt walls. This report provides a record of data acquired during a series of experiments designed to measure the leaching rate of salt walls in a labscale simulated cavern, as well as discussion of the data. These results should be of value to validate computational fluid dynamics (CFD) models used to simulate leaching applications. Three experiments were run in the transparent 89-cm (35-inch) ID diameter vessel previously used for several related projects. Diagnostics included tracking the salt wall dissolution rate using ultrasonics, an underwater camera to view pre-installed markers, and pre- and post-test weighing and measuring salt blocks that comprise the walls. In addition, profiles of the local brine/water conductivity and temperature were acquired at three locations by traversing conductivity probes to map out the mixing of injected raw water with the surrounding brine. The data are generally as expected, with stronger dissolution when the salt walls were exposed to water with lower salt saturation, and overall reasonable wall shape profiles. However, there are significant block-to-block variations, even between neighboring salt blocks, so the averaged data are considered more useful for model validation. The remedial leach tests clearly showed that less mixing and longer exposure time to unsaturated water led to higher levels of salt wall dissolution. The data for all three tests showed a dividing line between upper and lower regions, roughly above and below the fresh water injection point, with higher salt wall dissolution in all cases, and stronger (for remedial leach cases) or weaker (for standard leach configuration) concentration gradients above the dividing line

    The Canada-UK Deep Submillimetre Survey: The Survey of the 14-hour field

    Full text link
    We have used SCUBA to survey an area of 50 square arcmin, detecting 19 sources down to a 3sigma sensitivity limit of 3.5 mJy at 850 microns. We have used Monte-Carlo simulations to assess the effect of source confusion and noise on the SCUBA fluxes and positions, finding that the fluxes of sources in the SCUBA surveys are significantly biased upwards and that the fraction of the 850 micron background that has been resolved by SCUBA has been overestimated. The radio/submillmetre flux ratios imply that the dust in these galaxies is being heated by young stars rather than AGN. We have used simple evolution models based on our parallel SCUBA survey of the local universe to address the major questions about the SCUBA sources: (1) what fraction of the star formation at high redshift is hidden by dust? (2) Does the submillimetre luminosity density reach a maximum at some redshift? (3) If the SCUBA sources are proto-ellipticals, when exactly did ellipticals form? However, we show that the observations are not yet good enough for definitive answers to these questions. There are, for example, acceptable models in which 10 times as much high-redshift star formation is hidden by dust as is seen at optical wavelengths, but also acceptable ones in which the amount of hidden star formation is less than that seen optically. There are acceptable models in which very little star formation occurred before a redshift of three (as might be expected in models of hierarchical galaxy formation), but also ones in which 30% of the stars have formed by this redshift. The key to answering these questions are measurements of the dust temperatures and redshifts of the SCUBA sources.Comment: 41 pages (latex), 17 postscript figures, to appear in the November issue of the Astronomical Journa

    Urotensin receptor in GtoPdb v.2023.1

    Get PDF
    The urotensin-II (U-II) receptor (UT, nomenclature as agreed by the NC-IUPHAR Subcommittee on the Urotensin receptor [26, 36, 94]) is activated by the endogenous dodecapeptide urotensin-II, originally isolated from the urophysis, the endocrine organ of the caudal neurosecretory system of teleost fish [7, 93]. Several structural forms of U-II exist in fish and amphibians [94]. The goby orthologue was used to identify U-II as the cognate ligand for the predicted receptor encoded by the rat gene gpr14 [2, 20, 63, 69, 72]. Human urotensin-II, an 11-amino-acid peptide [20], retains the cyclohexapeptide sequence of goby U-II that is thought to be important in ligand binding [61, 53, 10]. This sequence is also conserved in the deduced amino-acid sequence of rat urotensin-II (14 amino-acids) and mouse urotensin-II (14 amino-acids), although the N-terminal is more divergent from the human sequence [19]. A second endogenous ligand for the UT has been discovered in rat [86]. This is the urotensin II-related peptide, an octapeptide that is derived from a different gene, but shares the C-terminal sequence (CFWKYCV) common to U-II from other species. Identical sequences to rat urotensin II-related peptide are predicted for the mature mouse and human peptides [32]. UT exhibits relatively high sequence identity with somatostatin, opioid and galanin receptors [94]. The urotensinergic system displays an unprecedented repertoire of four or five ancient UT in some vertebrate lineages and five U-II family peptides in teleost fish [91]

    Urotensin receptor (version 2019.4) in the IUPHAR/BPS Guide to Pharmacology Database

    Get PDF
    The urotensin-II (U-II) receptor (UT, nomenclature as agreed by the NC-IUPHAR Subcommittee on the Urotensin receptor [26, 36, 89]) is activated by the endogenous dodecapeptide urotensin-II, originally isolated from the urophysis, the endocrine organ of the caudal neurosecretory system of teleost fish [7, 88]. Several structural forms of U-II exist in fish and amphibians. The goby orthologue was used to identify U-II as the cognate ligand for the predicted receptor encoded by the rat gene gpr14 [20, 62, 68, 70]. Human urotensin-II, an 11-amino-acid peptide [20], retains the cyclohexapeptide sequence of goby U-II that is thought to be important in ligand binding [53, 11]. This sequence is also conserved in the deduced amino-acid sequence of rat urotensin-II (14 amino-acids) and mouse urotensin-II (14 amino-acids), although the N-terminal is more divergent from the human sequence [19]. A second endogenous ligand for the UT has been discovered in rat [83]. This is the urotensin II-related peptide, an octapeptide that is derived from a different gene, but shares the C-terminal sequence (CFWKYCV) common to U-II from other species. Identical sequences to rat urotensin II-related peptide are predicted for the mature mouse and human peptides [32]. UT exhibits relatively high sequence identity with somatostatin, opioid and galanin receptors [89]

    Urotensin receptor in GtoPdb v.2021.3

    Get PDF
    The urotensin-II (U-II) receptor (UT, nomenclature as agreed by the NC-IUPHAR Subcommittee on the Urotensin receptor [26, 36, 93]) is activated by the endogenous dodecapeptide urotensin-II, originally isolated from the urophysis, the endocrine organ of the caudal neurosecretory system of teleost fish [7, 92]. Several structural forms of U-II exist in fish and amphibians [93]. The goby orthologue was used to identify U-II as the cognate ligand for the predicted receptor encoded by the rat gene gpr14 [2, 20, 63, 69, 72]. Human urotensin-II, an 11-amino-acid peptide [20], retains the cyclohexapeptide sequence of goby U-II that is thought to be important in ligand binding [61, 53, 10]. This sequence is also conserved in the deduced amino-acid sequence of rat urotensin-II (14 amino-acids) and mouse urotensin-II (14 amino-acids), although the N-terminal is more divergent from the human sequence [19]. A second endogenous ligand for the UT has been discovered in rat [86]. This is the urotensin II-related peptide, an octapeptide that is derived from a different gene, but shares the C-terminal sequence (CFWKYCV) common to U-II from other species. Identical sequences to rat urotensin II-related peptide are predicted for the mature mouse and human peptides [32]. UT exhibits relatively high sequence identity with somatostatin, opioid and galanin receptors [93]

    Nuclear Energy Advanced Modeling and Simulation (NEAMS) waste Integrated Performance and Safety Codes (IPSC) : gap analysis for high fidelity and performance assessment code development.

    Get PDF
    This report describes a gap analysis performed in the process of developing the Waste Integrated Performance and Safety Codes (IPSC) in support of the U.S. Department of Energy (DOE) Office of Nuclear Energy Advanced Modeling and Simulation (NEAMS) Campaign. The goal of the Waste IPSC is to develop an integrated suite of computational modeling and simulation capabilities to quantitatively assess the long-term performance of waste forms in the engineered and geologic environments of a radioactive waste storage or disposal system. The Waste IPSC will provide this simulation capability (1) for a range of disposal concepts, waste form types, engineered repository designs, and geologic settings, (2) for a range of time scales and distances, (3) with appropriate consideration of the inherent uncertainties, and (4) in accordance with rigorous verification, validation, and software quality requirements. The gap analyses documented in this report were are performed during an initial gap analysis to identify candidate codes and tools to support the development and integration of the Waste IPSC, and during follow-on activities that delved into more detailed assessments of the various codes that were acquired, studied, and tested. The current Waste IPSC strategy is to acquire and integrate the necessary Waste IPSC capabilities wherever feasible, and develop only those capabilities that cannot be acquired or suitably integrated, verified, or validated. The gap analysis indicates that significant capabilities may already exist in the existing THC codes although there is no single code able to fully account for all physical and chemical processes involved in a waste disposal system. Large gaps exist in modeling chemical processes and their couplings with other processes. The coupling of chemical processes with flow transport and mechanical deformation remains challenging. The data for extreme environments (e.g., for elevated temperature and high ionic strength media) that are needed for repository modeling are severely lacking. In addition, most of existing reactive transport codes were developed for non-radioactive contaminants, and they need to be adapted to account for radionuclide decay and in-growth. The accessibility to the source codes is generally limited. Because the problems of interest for the Waste IPSC are likely to result in relatively large computational models, a compact memory-usage footprint and a fast/robust solution procedure will be needed. A robust massively parallel processing (MPP) capability will also be required to provide reasonable turnaround times on the analyses that will be performed with the code. A performance assessment (PA) calculation for a waste disposal system generally requires a large number (hundreds to thousands) of model simulations to quantify the effect of model parameter uncertainties on the predicted repository performance. A set of codes for a PA calculation must be sufficiently robust and fast in terms of code execution. A PA system as a whole must be able to provide multiple alternative models for a specific set of physical/chemical processes, so that the users can choose various levels of modeling complexity based on their modeling needs. This requires PA codes, preferably, to be highly modularized. Most of the existing codes have difficulties meeting these requirements. Based on the gap analysis results, we have made the following recommendations for the code selection and code development for the NEAMS waste IPSC: (1) build fully coupled high-fidelity THCMBR codes using the existing SIERRA codes (e.g., ARIA and ADAGIO) and platform, (2) use DAKOTA to build an enhanced performance assessment system (EPAS), and build a modular code architecture and key code modules for performance assessments. The key chemical calculation modules will be built by expanding the existing CANTERA capabilities as well as by extracting useful components from other existing codes

    Diversity and Distribution of Mites (Acari: Ixodida, Mesostigmata, Trombidiformes, Sarcoptiformes) in the Svalbard Archipelago

    Get PDF
    Svalbard is a singular region to study biodiversity. Located at a high latitude and geographically isolated, the archipelago possesses widely varying environmental conditions and unique flora and fauna communities. It is also here where particularly rapid environmental changes are occurring, having amongst the fastest increases in mean air temperature in the Arctic. One of the most common and species-rich invertebrate groups in Svalbard is the mites (Acari). We here describe the characteristics of the Svalbard acarofauna, and, as a baseline, an updated inventory of 178 species (one Ixodida, 36 Mesostigmata, 43 Trombidiformes, and 98 Sarcoptiformes) along with their occurrences. In contrast to the Trombidiformes and Sarcoptiformes, which are dominated in Svalbard by species with wide geographical distributions, the Mesostigmata include many Arctic species (39%); it would thus be an interesting future study to determine if mesostigmatid communities are more affected by global warming then other mite groups. A large number of new species (42 spp.) have been described from Svalbard, including 15 that have so far been found exclusively there. It is yet uncertain if any of these latter species are endemic: six are recent findings, the others are old records and, in most cases, impossible to verify. That the Arctic is still insufficiently sampled also limits conclusions concerning endemicity.publishedVersio
    • …
    corecore