67 research outputs found

    Freeze Branding Horses

    Get PDF
    6 pp., 7 photos, 2 tables, 1 illustrationFreeze branding of horses has many advantages. It is safe, economical, simple to do and relatively painless. It can be done on horses of any age and does not damage the horse's hide. This publication gives complete, step-by-step instructions for freeze branding as well as information on branding systems and sites

    Starshade Rendezvous Probe

    Get PDF
    The Starshade Rendezvous Probe Mission (https://smd-prod.s3.amazonaws.com/science-red/s3fs-public/atoms/files/Starshade2.pdf ) [1] will be the first space-based, high-contrast imaging mission with the potential to detect and characterize Earth-like planets in the habitable zone (HZ) around sunlike stars while at the same time exploring entire planetary systems about our nearest neighbors. Over the last two decades, astronomers have discovered and cataloged thousands of planets around other stars. Nevertheless, we have yet to find a planetary system like our own or to characterize discovered small planets to determine if they are similar to Earth. The next step in exploration is to image full planetary systems, including their HZs, and to obtain planetary spectra with enough sensitivity to determine if a planet is Earth-like. A space-based direct imaging mission to ultimately find and characterize other Earth-like planets is a long-term priority for space astrophysics [2, 3]

    The Lantern Vol. 62, No. 2, Summer 1995

    Get PDF
    • In the Season of Grief • Subtleties • Crazehaze • Blacksmith • I Feel Your Weight • L\u27Amour Manque • Sense of You • Greed • Gender (Rolled) • Soliloquy of a Punter • Nightmares • God is a Frisbee • Cleansing • Flat • Chemistry of Mind • Louderback • Ritual • Rebuilding Mother • Scott Lomba • The Acting Bug • Untitled • The Seek • Gluttony • Great South Bay • Archangel • Suburban Zeus • Vespers • At Change of A-Dress • The Hierarchy of Coolness • The Apology • I Know it is Evening There • Pridehttps://digitalcommons.ursinus.edu/lantern/1146/thumbnail.jp

    Expert consensus and recommendations on safety criteria for active mobilization of mechanically ventilated critically ill adults

    Get PDF
    Introduction: The aim of this study was to develop consensus recommendations on safety parameters for mobilizing adult, mechanically ventilated, intensive care unit (ICU) patients. Methods: A systematic literature review was followed by a meeting of 23 multidisciplinary ICU experts to seek consensus regarding the safe mobilization of mechanically ventilated patients. Results: Safety considerations were summarized in four categories: respiratory, cardiovascular, neurological and other. Consensus was achieved on all criteria for safe mobilization, with the exception being levels of vasoactive agents. Intubation via an endotracheal tube was not a contraindication to early mobilization and a fraction of inspired oxygen less than 0.6 with a percutaneous oxygen saturation more than 90% and a respiratory rate less than 30 breaths/minute were considered safe criteria for in- and out-of-bed mobilization if there were no other contraindications. At an international meeting, 94 multidisciplinary ICU clinicians concurred with the proposed recommendations. Conclusion: Consensus recommendations regarding safety criteria for mobilization of adult, mechanically ventilated patients in the ICU have the potential to guide ICU rehabilitation whilst minimizing the risk of adverse events

    Sertraline for anxiety in adults with a diagnosis of autism (STRATA) : study protocol for a pragmatic, multicentre, double-blind, placebo-controlled randomised controlled trial

    Get PDF
    Background: Selective serotonin reuptake inhibitors (SSRIs) are commonly prescribed to manage anxiety in adults with an autism diagnosis. However, their effectiveness and adverse effect profile in the autistic population are not well known. This trial aims to determine the effectiveness and cost-effectiveness of the SSRI sertraline in reducing symptoms of anxiety and improving quality of life in adults with a diagnosis of autism compared with placebo and to quantify any adverse effects. Methods: STRATA is a two-parallel group, multi-centre, pragmatic, double-blind, randomised placebo-controlled trial with allocation at the level of the individual. It will be delivered through recruiting sites with autism services in 4 regional centres in the United Kingdom (UK) and 1 in Australia. Adults with an autism diagnosis and a Generalised Anxiety Disorder Assessment (GAD-7) score ≥ 10 at screening will be randomised 1:1 to either 25 mg sertraline or placebo, with subsequent flexible dose titration up to 200 mg. The primary outcome is GAD-7 scores at 16 weeks post-randomisation. Secondary outcomes include adverse effects, proportionate change in GAD-7 scores including 50% reduction, social anxiety, obsessive-compulsive symptoms, panic attacks, repetitive behaviours, meltdowns, depressive symptoms, composite depression and anxiety, functioning and disability and quality of life. Carer burden will be assessed in a linked carer sub-study. Outcome data will be collected using online/paper methods via video call, face-to-face or telephone according to participant preference at 16, 24 and 52 weeks post-randomisation, with brief safety checks and data collection at 1–2, 4, 8, 12 and 36 weeks. An economic evaluation to study the cost-effectiveness of sertraline vs placebo and a QuinteT Recruitment Intervention (QRI) to optimise recruitment and informed consent are embedded within the trial. Qualitative interviews at various times during the study will explore experiences of participating and taking the trial medication. Discussion: Results from this study should help autistic adults and their clinicians make evidence-based decisions on the use of sertraline for managing anxiety in this population. Trial registration: ISRCTN, ISRCTN15984604. Registered on 08 February 2021. EudraCT 2019-004312-66. ANZCTR ACTRN12621000801819. Registered on 07 April 2021

    The Habitable Exoplanet Observatory (HabEx) Mission Concept Study Final Report

    Get PDF
    The Habitable Exoplanet Observatory, or HabEx, has been designed to be the Great Observatory of the 2030s. For the first time in human history, technologies have matured sufficiently to enable an affordable space-based telescope mission capable of discovering and characterizing Earthlike planets orbiting nearby bright sunlike stars in order to search for signs of habitability and biosignatures. Such a mission can also be equipped with instrumentation that will enable broad and exciting general astrophysics and planetary science not possible from current or planned facilities. HabEx is a space telescope with unique imaging and multi-object spectroscopic capabilities at wavelengths ranging from ultraviolet (UV) to near-IR. These capabilities allow for a broad suite of compelling science that cuts across the entire NASA astrophysics portfolio. HabEx has three primary science goals: (1) Seek out nearby worlds and explore their habitability; (2) Map out nearby planetary systems and understand the diversity of the worlds they contain; (3) Enable new explorations of astrophysical systems from our own solar system to external galaxies by extending our reach in the UV through near-IR. This Great Observatory science will be selected through a competed GO program, and will account for about 50% of the HabEx primary mission. The preferred HabEx architecture is a 4m, monolithic, off-axis telescope that is diffraction-limited at 0.4 microns and is in an L2 orbit. HabEx employs two starlight suppression systems: a coronagraph and a starshade, each with their own dedicated instrument

    The Habitable Exoplanet Observatory (HabEx) Mission Concept Study Final Report

    Get PDF
    The Habitable Exoplanet Observatory, or HabEx, has been designed to be the Great Observatory of the 2030s. For the first time in human history, technologies have matured sufficiently to enable an affordable space-based telescope mission capable of discovering and characterizing Earthlike planets orbiting nearby bright sunlike stars in order to search for signs of habitability and biosignatures. Such a mission can also be equipped with instrumentation that will enable broad and exciting general astrophysics and planetary science not possible from current or planned facilities. HabEx is a space telescope with unique imaging and multi-object spectroscopic capabilities at wavelengths ranging from ultraviolet (UV) to near-IR. These capabilities allow for a broad suite of compelling science that cuts across the entire NASA astrophysics portfolio. HabEx has three primary science goals: (1) Seek out nearby worlds and explore their habitability; (2) Map out nearby planetary systems and understand the diversity of the worlds they contain; (3) Enable new explorations of astrophysical systems from our own solar system to external galaxies by extending our reach in the UV through near-IR. This Great Observatory science will be selected through a competed GO program, and will account for about 50% of the HabEx primary mission. The preferred HabEx architecture is a 4m, monolithic, off-axis telescope that is diffraction-limited at 0.4 microns and is in an L2 orbit. HabEx employs two starlight suppression systems: a coronagraph and a starshade, each with their own dedicated instrument.Comment: Full report: 498 pages. Executive Summary: 14 pages. More information about HabEx can be found here: https://www.jpl.nasa.gov/habex

    Search for single production of vector-like quarks decaying into Wb in pp collisions at s=8\sqrt{s} = 8 TeV with the ATLAS detector

    Get PDF

    Measurement of the charge asymmetry in top-quark pair production in the lepton-plus-jets final state in pp collision data at s=8TeV\sqrt{s}=8\,\mathrm TeV{} with the ATLAS detector

    Get PDF
    corecore