White Paper on

Starshade Rendezvous Probe

A Submission to the National Academy of Sciences

TEAM MEMBERS

Principal Investigators							
Sara Seager, Massachusetts Institute of Technology	N. Jeremy Kasdin, Princeton University						
Co-Investigators							
Jeff Booth, NASA Jet Propulsion Laboratory	Matt Greenhouse, NASA Goddard Space Flight Center						
Doug Lisman, NASA Jet Propulsion Laboratory	Bruce Macintosh, Stanford University						
Stuart Shaklan, NASA Jet Propulsion Laboratory	Melissa Vess, NASA Goddard Space Flight Center						
Steve Warwick, Northrop Grumman Corporation	David Webb, NASA Jet Propulsion Laboratory						
Stud	y Team						
Andrew Romero-Wolf, NASA Jet Propulsion Laboratory	John Ziemer, NASA Jet Propulsion Laboratory						
Andrew Gray, NASA Jet Propulsion Laboratory	Michael Hughes, NASA Jet Propulsion Laboratory						
Greg Agnes, NASA Jet Propulsion Laboratory	Jon Arenberg, Northrop Grumman Corporation						
Samuel (Case) Bradford, NASA Jet Propulsion Laboratory	Michael Fong, NASA Jet Propulsion Laboratory						
Jennifer Gregory, NASA Jet Propulsion Laboratory	Steve Matousek, NASA Jet Propulsion Laboratory						
Jonathan Murphy, NASA Jet Propulsion Laboratory	Jason Rhodes, NASA Jet Propulsion Laboratory						
Dan Scharf, NASA Jet Propulsion Laboratory	Phil Willems, NASA Jet Propulsion Laboratory						
Science Team							
Simone D'Amico, Stanford University	John Debes, Space Telescope Science Institute						
Shawn Domagal-Goldman, NASA Goddard Space Flight Center	Sergi Hildebrandt, NASA Jet Propulsion Laboratory						
Renyu Hu, NASA Jet Propulsion Laboratory	Michael Hughes, NASA Jet Propulsion Laboratory						
Alina Kiessling, NASA Jet Propulsion Laboratory	Nikole Lewis, Space Telescope Science Institute						
Jason Rhodes, NASA Jet Propulsion Laboratory	Maxime Rizzo, NASA Goddard Space Flight Center						
Aki Roberge, NASA Goddard Space Flight Center	Tyler Robinson, Northern Arizona University						
Leslie Rogers, University of Chicago	Dmitry Savransky, Cornell University						
Dan Scharf, NASA Jet Propulsion Laboratory	Chris Stark, Space Telescope Science Institute						
Maggie Turnbull, SETI Institute							

The cost information contained in this document is of a budgetary and planning nature and is intended for informational purposes only. It does not constitute a commitment on the part of JPL and/or Caltech

July 10, 2019

Jet Propulsion Laboratory California Institute of Technology Pasadena, CA 91109 The Starshade Rendezvous Probe Mission (<u>https://smd-prod.s3.amazonaws.com/science-red/s3fs-public/atoms/files/Starshade2.pdf</u>) [1] will be the first space-based, high-contrast imaging mission with the potential to detect and characterize Earth-like planets in the habitable zone (HZ) around sunlike stars while at the same time exploring entire planetary systems about our nearest neighbors. Over the last two decades, astronomers have discovered and cataloged thousands of planets around other stars. Nevertheless, we have yet to find a planetary system like our own or to characterize discovered small planets to determine if they are similar to Earth. The next step in exploration is to image full planetary systems, including their HZs, and to obtain planetary spectra with enough sensitivity to determine if a planet is Earth-like. A space-based direct imaging mission to ultimately find and characterize other Earth-like planets is a long-term priority for space astrophysics [2, 3].

1. Overview

The Starshade Rendezvous Probe Mission concept consists of a starshade flying with the Wide Field Infrared Survey Telescope (WFIRST) at L2 during the later stage of its prime mission. It utilizes the Coronagraph Instrument (CGI) on WFIRST to perform space-based direct imaging capable of discovering and characterizing exoplanets, down to Earth-size. The design reference mission (DRM) consists of a *deep dive* on our *nearest neighbor star systems* to find and characterize all planets within view (Figure 1). This will provide unprecedented information about planetary system formation, dust distributions, planet populations, and planetary compositions. The science case lays out specific science goals and focused investigations to image and spectrally characterize the dust disks and planets around at least 10 of our nearest sunlike stars. The science case also includes imaging another 10 slightly more distant sunlike stars to obtain spectra of known giant planets. *The Starshade Rendezvous Probe go is to place our Earth and Solar System into context with the nearest planetary systems*.

The starshade is a powerful tool for space-based direct imaging of exoplanets, one that simplifies demands on the telescope compared to other starlight suppression techniques. A starshade is a large, precisely shaped screen, tens of meters in diameter, flying in formation with a distant telescope situated tens of thousands of kilometers away (see Figure 2 and Ref. [4]). The starshade blocks unwanted starlight, creating a shadow where the telescope lies, thus allowing only (off-axis) planet light to enter the telescope. Built to tolerances of better than ~100 μ m for petal shape and ~1 mm for petal positioning, with lateral position tolerances of ±1 m at distances up to

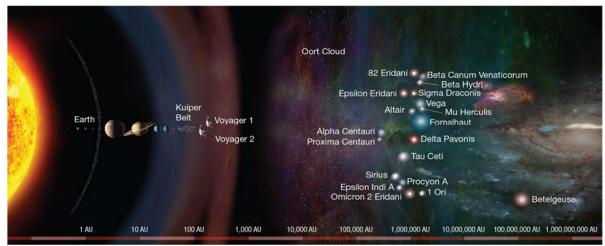


FIGURE 1. Moving outwards from our Sun by factors of ten (left). The Sun is followed by theterrestrial planets, asteroid belt, giant planets, and the Kuiper Belt. The Voyager spacecraft have recently crossed the outer edge of the Sun's influence. The Oort cloud, the final bound part of the solar system lurks beyond. Next are the nearest stars (right)—the next frontier for space exploration. This map was adapted from images by Richard Powell at atlasoftheuniverse.com. Credit: ESO, Richard Powell.

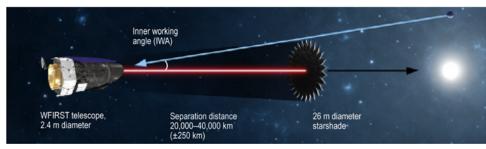


FIGURE 2. Schematic of the starshade-telescope system (not to scale) and observing geometry with the inner working angle independent of telescope size.

37,700 km, the starshade can reach inner working angles (IWAs) of ≤ 100 mas and reduce the residual starlight by more than a factor of 10^{10} .

First conceived of in the 1960s [5], and revisited nearly every decade since (see BOSS [6] and UMBRA [7], as well as Refs. [4, 8–10]), starshade technology builds upon heritage from large spacebased radio antenna deployables [11]. The benefits of a starshade are many. No new technologies for the space telescope are needed because the burden of starlight suppression is on the starshade; the contrast and IWA largely decouple from telescope aperture size; the outer working angle is limited only by the size of the detector; no complex wavefront control is necessary; high throughput and broad wavelength bandpass (400–1,000 nm) are easily achievable; the modest number of nearby target stars available is well-matched to the number of starshade retargeting maneuvers, mitigating the main starshade challenge of repositioning for target stars; other telescope instruments can operate between starshade observations while the starshade is slewing to the next position.

The Starshade Rendezvous Probe Mission opportunity allows NASA to gain *operational experience in space* with a telescope-starshade observing system. The value of such experience focused on one of NASA's highest priority goals is difficult to overstate—it would inform the design and operation of all such future observatories, while fitting within the proposed cap of a probe-class mission. Leveraging WFIRST as described is the only way to achieve such value at a cost of less than \$1B, and in less than 10 years. Additionally, with the WFIRST modest telescope aperture and existing instrumentation capabilities, the Starshade Rendezvous Probe bridges the gap between census missions like Kepler and a future space-based flagship direct imaging exoplanet mission, such as the Habitable Exoplanet Observatory (HabEx).

This Starshade Rendezvous Probe Study was competitively selected by NASA to update the

previously completed 2015 Starshade Probe Mission concept study (Exo-S; [4]), for submission to the 2020 Decadal Survey. The Starshade Rendezvous Probe Study took place from 5/2017–12/2018.

2. Summary of Science Goals and Objectives

The Starshade Rendezvous Probe Mission targets the nearest 10 to 12 sunlike stars to explore any planetary systems found and to find other Earth-like planets, if they exist, around these stars, thus addressing NASA's first strategic objective to "Understand the Sun, Earth, Solar System, and Universe." An example of what the solar system would look like if imaged with the Starshade Rendezvous Probe imaging sensitivity at 8.44 pc is shown in Figure 3.

The science team formulated two overarching questions to guide the mission study:

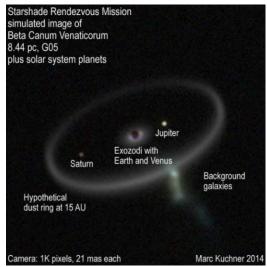


FIGURE 3. Starshade simulated image of the Rendezvous Probe's observation of a solar-system–like planetary system orbiting a nearby sunlike star.

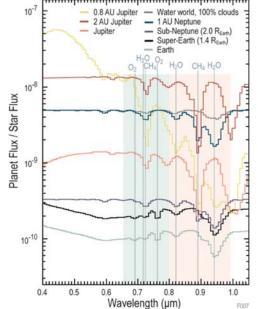
- Is the Earth unique as compared to small planets orbiting our nearest neighboring sunlike stars?
- How does the solar system compare to the planetary systems orbiting our nearest neighboring sunlike stars?

In order to begin addressing these questions, the Starshade Rendezvous Probe Mission has three science objectives.

Objective 1a: Habitability and Biosignature Gases. Determine whether super-Earth size or smaller exoplanets exist in the habitable zone around the nearest sunlike stars and have signatures of oxygen and water vapor in their atmospheres.

Objective 1b: The Nearest Solar System Analogs. Detect and characterize planets orbiting the nearest sunlike stars.

Objective 1a is focused on discovering Earth-size exoplanets in the HZs of nearby sunlike stars, if they exist. If an Earth-like planet exists around one of the mission's target stars, Starshade Rendezvous Probe can obtain spectra (Figure 4). While searching for potential Earth-like planets, Objective 1b will be achieved automatically. Other planets in the observed system that are larger and possibly at different orbital distances will be discovered. Starshade Rendezvous Probe will produce an imaging and spectroscopic portrait of the major components of the nearest equivalents of our solar system.

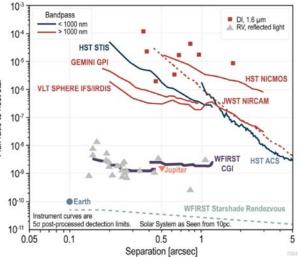

Objective 2: Brightness of Zodiacal Dust Disks. Establish if the zodiacal cloud of our inner solar system is representative of the population of our nearest neighbor stars.

Observations under Objective 2 will shed light on the dust-generating parent bodies (asteroids and comets), as well as assess exozodi levels for future missions.

Objective 3: Giant Planet Atmosphere Metallicity. Determine the atmospheric metallicity of known cool giant planets to examine trends with planetary mass and orbital semi-major axis, and to determine if these trends are consistent with our solar system.

With this third science objective, high science return of known exoplanet targets is achievable. Many of the known giant planets will be detectable by virtue of their positions in the late 2020s.

To put the Starshade Rendezvous Probe in context, several ongoing and future space missions (Transiting Exoplanet Survey Satellite [TESS], PLAnetary Transits and Oscillations of stars [PLATO], Atmospheric Remote-sensing Infrared Exoplanet Large-survey [ARIEL]) will be concentrating transit spectroscopy on measurements of exoplanets, providing deep characterization of their atmospheres in the years to come. However, these observations will favor hot/warm planets on short orbits, and it is expected such observations will primarily reveal or study Earth-sized planets only around M-type stars. On FIGURE 4. Earth-like planets drive the sensitivity requirements the ground, future extremely large telescopes will that enable observation of a wide variety of exoplanet types. have the spatial resolution to directly image exoplanets around nearby stars. However, with bands available. The Starshade Rendezvous Probe (656– projected instrumental contrast limited 10^{-8} - 10^{-7} at best in the near infrared, they may only



Simulated spectra with the CGI spectral resolution R=50 for various planet types are shown in relation to the spectroscopic to 800 nm) spectroscopic band is shown as a green shaded region while the (800-975 nm) band is shown in orange. The be able to directly detect and characterize temperate the spectral absorption lines. Credit: Aki Roberge

HZ planets around nearby M-type stars. Direct imaging and characterization of exoplanets in reflected light around sunlike (FGK) stars requires at least 10⁻¹⁰ contrast or better and is only accessible from the vantage point of space by (Figure 5).

Yields for various planet types is a key issue and it is important to note that WFIRST observations with starshade will be sensitive to a \overline{a} wide variety of planets. Figure 6 shows the expected number of planets discovered by a single visit imaging (SNR>5) the stars in the target list with the possibility to obtain spectra with SNR>15. For Earth-like exoplanets, with the more stringent requirements of spectroscopically FIGURE 5. Direct imaging capabilities of current and future characterization with SNR≥20, and that the orbit is constrained to the HZ, the expected yield is instruments and 100 hr integration times for the WFIRST CGI ~0.4. It is worth emphasizing that the 1 σ and starshade. The state of the art is located in the upper-right uncertainty interval estimated by SAG-13 is [0.08, 0.7], nearly spanning an order of magnitude. Here sensitivity by at least two orders of magnitude over the state of the assumed value of $\eta_{Earth} = 0.24$ adopted by the the art. During deep dives, starshade sensitivity is another EXOPAG SAG-13 [14] is ~1.3.

It is worth noting that increasing the end-toend efficiency of the CGI instrument results in [13], and Stapelfeldt (private communication 2015). Image significant improvements to Earth-like exoplanet credit: T. Meshkat and V. Bailey.

instrumentation. Shown are the 5 σ contrast limits after postsection of the plot, including both ground- and space-based coronagraphs. The WFIRST CGI is expected to improve order-of-magnitude better, enabling, for the first time, discovery and characterization of Earth-like planets in the HZs of nearby sunlike stars. Figure and caption adapted from Refs. [12] and

sensitivity. This analysis shows that with CGI requirements and a starshade, it is possible to detect the oxygen and water vapor absorption lines (spectral SNR>20) for the ~4 nearest sunlike stars, provided an Earth-like exoplanet is present, with the assumption of an exozodiacal dust disk brightness of 4.5 zodi. With the predicted performance of CGI and starshade, the number doubles to

 ~ 8 targets. The integration time window is constrained due to the solar exclusion angles making the end-to-end efficiency of the WFIRST CGI the limiting factor for sensitivity to Earth-like exoplanets.

sitivity to Earth-like exoplanets. To discover Earth-size planets in the HZs of nearby rs and to answer many other outstanding questions uires the large-scale dedicated effort of the stars and to answer many other outstanding questions requires the large-scale dedicated effort of the Starshade Rendezvous Probe Mission. Appendix A shows a science traceability matrix (STM) that captures the above discussion and includes the key observables spacecraft and instrument and performance requirements.

Mission Overview, Schedule, and Cost 3.

large, optically precise deployable mask that when flown along the line of sight between WFIRST and a investigation are visited at least once. The planet

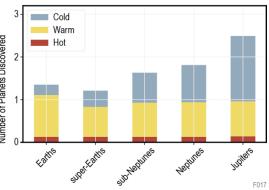
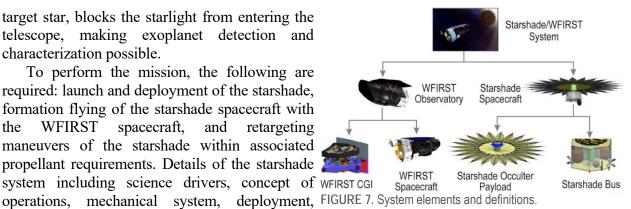



FIGURE 6. Planet yield as a function of planet type and approximate temperature. The yield was obtained based on the single-visit completeness assuming detection with Mission Architecture: The starshade payload is a an SNR≥5. All observations assume a zodiacal dust disk brightness of 4.5 zodi. The bar chart assumes that the top 10 targets for the habitability and biosignature gases parameters are taken from the Exo-S report [4]. Each detected planet is amenable to SNR=15 spectra.

target star, blocks the starlight from entering the telescope, making exoplanet detection and characterization possible.

To perform the mission, the following are required: launch and deployment of the starshade, formation flying of the starshade spacecraft with the WFIRST spacecraft, and retargeting maneuvers of the starshade within associated propellant requirements. Details of the starshade system including science drivers, concept of WFIRST CGI

formation flying and retargeting, and error budget are all provided in the Starshade Rendezvous Probe Mission Report.

The Starshade/WFIRST system includes two spacecraft: the starshade spacecraft and the WFIRST observatory (Figure 7). The starshade spacecraft itself is comprised of two major elements: the starshade S/C bus and the starshade occulter payload designed to meet the optical requirements of the mission. The payload contains three mechanical subsystems: 1) the petals, 2) the inner disk, and 3) the Petal Launch Restraint Unfurl System (PLUS). The payload design, a 26 m deployable, in-space starshade, is enabled by and based upon the technology developed under NASA's Exoplanet Exploration Program's (ExEP's) S5 effort (Starshade to Technology Readiness Level (TRL) 5; see Section 4 [15]), an activity to address all critical starshade technologies and raise them to TRL 5.

The Starshade Rendezvous Probe Mission is enabled by the WFIRST CGI, which is already in development. On WFIRST, the CGI's mission is to characterize roughly a dozen known exoplanets previously detected with radial velocity techniques, and photometrically discover new planets down to super-Earths. The CGI includes an imaging camera and an integral field spectrograph (IFS). The Starshade Rendezvous Probe uses both the CGI camera and IFS to enable detection and characterization of Earth-sized planets in the HZ, and the CGI direct imager and low-order wavefront sensor (LOWFS) for rendezvous and formation control.

The WFIRST observatory includes several functions required by the Starshade Rendezvous Probe Mission. In particular, there are four areas of impact to WFIRST, each with a unique feature: SAC, formation control sensing and commanding, S-band radio link, and starshade-specific filters. The starshade requirements and supporting equipment described here have been incorporated into the WFIRST baseline. WFIRST development is well underway and the starshade team has flowed requirements to WFIRST through an Interface Requirements Document [16].

At the time of this writing, the WFIRST mission is assessing the scope of CGI as the project prepares for the next gate milestone. If changes to CGI spectroscopic capability are considered, it will affect the ability of the Starshade Rendezvous Probe to meet some of the science objectives. However, the complete impact and potential alternative approaches to meeting the science with changes in CGI would need to be studied in more depth. The Starshade Rendezvous Probe team has the capability to rapidly assess science return as a function of instrument performance and could make those assessments in the future, if necessary.

Mission Summary and Operations Schedule: The Starshade Rendezvous Probe DRM is driven by the target observation schedule, integration times, and number of revisits. Table 1 summarizes key mission parameters. The baseline DRM is a Class B mission based on a chemical propulsion bus with a 2-year science prime mission, plus a 1-year extended mission. Delta-V requirements flow directly from the science observation schedule, and, in turn, drive propellant mass. The retargeting slews were optimized to maximize observation time while minimizing delta-V.

The starshade spacecraft would launch from Cape Canaveral in January 2029 on a Falcon 9 expendable booster (see Figure 8). Three trajectory correction maneuvers are needed for the mission to reach L2. At L+60 days, the starshade spacecraft will rendezvous with WFIRST and start science operations. The target list is set by the science team to meet science Objectives 1-3. Then, the target observations are integrated into the science observation schedule. Figure 8 shows 2-year observation example schedule an integrated into the WFIRST mission timeline and the delta-V costs for each retargeting maneuver.

	TABLE T. MISSION SUMMARY.						
•	Orbit Type	Sun-Earth L2 Halo					
	Mission Class	Class B					
	Mission	2 years prime mission					
	Duration	1 year extended mission					
	Delta-V	1,400 m/sec total					
		1,100 m/sec for retargeting					
	Propulsion	Dual Mode System Biprop for retargeting					
		Monoprop for attitude control system, formation					
		control					
	Launch Mass*	3784 kg					
	Power	Peak: 1054 W at deployment					
		Science and retargeting 660–747W met with					
·		>30% margin					
	Navigation	DSN 34 meter antenna:					
		Nominal 2 hours/day, 3 days/week 4 days/week					
		during maneuvers					
	Formation	Interspacecraft S-band RF link Acquisition:					
	Sensing	100 km beacon and camera					
		Science: ±1 m using diffracted starlight in pupil					
		plane imager					
	Attitude	3-axis stabilized for retargeting maneuvers					
	Control	Spin stabilized 0.33 RPM for science observations					

Mission Cost: The cost information contained in this document is of a budgetary and planning nature and is intended for informational purposes only. It does not constitute a commitment on the part of JPL and/or Caltech. The overall mission cost was determined by JPL's Team X, with the starshade payload cost as an input. The starshade payload cost and its PRICE H cost model were assessed by JPL mechanical and instrumentation experts for technical basis. This was used as payload input into the Team X sessions and separately assessed by Team X engineers for credibility. The total mission cost estimate for the 2-year baseline mission, by phase, is presented in Table 2. The \$967M project cost includes 30% Phase A–D development reserve and 15% operational reserve in Phase E. Table 2 provides the Team X estimate and the study team's estimate, which was made after Team X delivery to supplement two areas: WBS 6.0, Flight System, and WBS, 4.0 Science. Full details including rationale are provided in the Starshade Rendezvous Probe Report. Note that the cost of

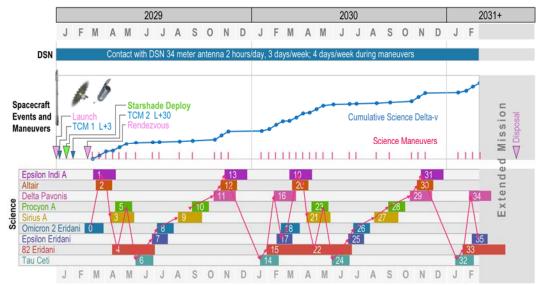


FIGURE 8. Mission timeline. Red line segments are translational retargeting slews, which may take from a couple of days to up to two weeks. Each red dot is a single day's observation. The horizontal bars represent time windows where the starshade to Sun angular constraints have been met and the star is possible to observe. The observation days are chosen to be at the beginning of the window.

starshade readiness on WFIRST, up to approval of TABLE 2. Summary of baseline mission cost. Rendezvous as a mission, is carried by the WFIRST mission.

Mission Development Schedule: The overall Starshade Rendezvous Probe schedule is presented in Figure 9, along with the WFIRST Project Schedule and the current schedule for the NASA ExEP S5 activity. This program schedule profile challenges, in some notably results the approximately one-year period between achieving TRL 5 and Key Decision Point (KDP) C of the starshade mission development. System experts do not consider one year to be adequate. However, the presented schedule is nearly ideal in that it provides two years of overlap between the prime missions of WFIRST and the Starshade Rendezvous Probe. NASA may consider programmatic changes to create more time in the schedule prior to KDP-C of the probe mission.

Work Breakdown Structure (WBS) Elements	SRP Study Team Estimate	Team X Estimate	
Development Cost (Phase A-D)	\$710M	\$788M	
1.0, 2.0, & 3.0 Management, Systems	\$60M	\$60M	
Engineering, and Mission Assurance			
4.0 Science	\$8M	\$8M	
5.0 Payload System	\$221M	\$221M	
6.0 Flight System	\$190M	\$250M	
7.0 Mission Op Preparation	\$15M	\$15M	
9.0 Ground Data Systems	\$14M	\$14M	
10.0 ATLO	\$29M	\$29M	
11.0 Education and Public Outreach	-	-	
12.0 Mission and Navigation Design	\$7M	\$7M	
Development Reserves (30%)	\$164M	\$182M	
Operations Cost (Phase E)	\$44.5M	\$28.5M	
1.0 Management	\$2.4M	\$2.4M	
4.0 Science	\$22M	\$8.2M	
7.0 Mission Operations	\$11.8M	\$11.8M	
9.0 Ground Data Systems	\$2.5M	\$2.5M	
Operations Reserves (15%)	\$5.8M	\$3.6M	
Launch Vehicle (LV)	\$150M	\$150M	
Total Cost (including LV)	\$905M	\$967M	

4 **Technology Maturation Plan**

The ExEP has recently received approval from NASA's Astrophysics Division to execute an activity to develop starshade technology to TRL 5. This activity, called S5 (https://exoplanets.nasa.gov/exep/technology/starshade/), is designed to close the three technology gaps to starshade implementation identified in the ExEP Technology Plan. These technology gaps are in formation flying between the starshade and telescope, starlight suppression, and mechanical shape stability and deployment accuracy. Within these three technology gaps are five separate technologies. The technology requiring development for formation flying is the sensing of transverse displacement of the starshade from the telescope/star axis. To close the starlight suppression technology gap, S5 must develop two technologies. One is a validated model that includes all significantly contributing optical physics and correctly predicts variation of contrast performance with change of shape, the validation to be demonstrated at flight-like Fresnel numbers. The other technology is an optical edge to the starshade that does not scatter sunlight into the telescope at a level that significantly impairs exoplanet imaging. The two technologies that close the mechanical technology gap are the fabrication of petals with sufficiently precise and thermally stable dimensions to achieve the requisite optical contrast performance, and the reliable deployment of these petals to their correct positions in a stable manner.

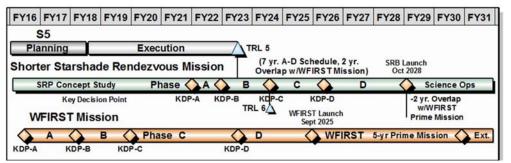


FIGURE 9. Starshade Rendezvous Probe Mission schedule in the context of the WFIRST Mission Schedule and NASA Exoplanet Program Office's S5 Technology Plan schedule to mature starshade technology to TRL 5.

TRL is defined within the context of a specific mission concept, which defines the necessary performance requirements for the technology and the relevant environments within which it must operate. S5 takes the Starshade Rendezvous Probe as that mission concept. All of the Key Performance Parameters (KPPs) to be demonstrated within S5 are derived from the Starshade Rendezvous Probe science requirements, and the fidelity of S5 test articles is determined by comparison to the Starshade Rendezvous Probe reference design. Table 3 lists the current TRL and the KPPs for starshade technologies to be at TRL 5 for Starshade Rendezvous Probe.

Technology Gaps	Current TRL	KPP #	KPP Specifications	KPP Threshold Values	Threshold Contrast	KPP Goals
Starlight Suppression	4 1		Demonstrate flight instrument contrast performance at inner working angle is viable via small-scale lab tests	1×10 ⁻¹⁰	NA	5×10 ⁻¹¹
		2	Validate contrast model accuracy relative to flight-like shape errors	≤25%	NA	≤10%
Solar Scatter	4	3	Verify solar scatter lobe brightness visual magnitude	V ≥ 25 mags	NA	V ≥ 26 mags
Lateral Formation Sensing & Control	5	4	Verify lateral position sensor accuracy and that it supports ± 1 m control via simulation	≤±30 cm	1×10 ⁻¹¹	≤±10 µm
Petal Shape	4 5		Verify pre-launch accuracy (manufacture, AI&T, storage)	≤±70 µm	1×10 ⁻¹¹	≤±50 µm
		6	Verify on-orbit thermal shape stability	≤±80 µm	8×10 ⁻¹²	≤±40 µm
Petal Position	4	7	Verify pre-launch accuracy (manufacture, AI&T, storage)	≤±300 µm	1×10 ⁻¹²	≤±212 µm
		8	Verify on-orbit thermal position stability	≤±200 µm	1×10 ⁻¹²	≤±100 µm

TABLE 3. Key performance parameters.

5. Management Plan

The point design presented in this report assumes the Starshade Rendezvous Probe Mission is managed by JPL, with a principal investigator (PI) leading the science team. The spacecraft would be provided by NASA's Goddard Space Flight Center (GSFC), though the commercial spacecraft are an option for future trade studies. This organizational structure leverages JPL's experience in managing mid-size missions and the fact that it is implementing the S5 technology project as well as the CGI. This management partnership would allow for a high bandwidth technical and programmatic coordination between the two projects. The JPL project manager provides project oversight for schedule, budget, and deliverables throughout the lifecycle between the PI organization, JPL, GSFC, and all subcontractors. The mission is managed to the requirements of NPR 7120.5E. Appropriate Interface Control Documents (ICDs) will need to be negotiated early in a formal Phase A (draft versions have been developed already), and particular attention paid to the linked nature of the Rendezvous Probe to the WFIRST project. The JPL safety and mission assurance (S&MA) manager has oversight and involvement between JPL and GSFC throughout formulation, implementation, and up to launch and early on-orbit operations (30 days). For more details, see the Starshade Rendezvous Probe Final Report [1].

6. Concluding Remarks

The Starshade Rendezvous Probe Mission concept, system engineered to achieve the focused scientific objectives, demonstrates that a realizable, highly capable starshade mission could be launched and operated in formation with WFIRST. The combined missions will perform, in the next decade, space-based direct imaging in a deep dive on our nearest neighbors, discovering and characterizing exoplanets down to Earth size in the HZ. Achieving this significant scientific milestone, along with other compelling science, can occur simultaneously with development of the scientific framework and operational experience for future use of starshades in flagship missions for exoplanet discovery and characterization. The Starshade Rendezvous Probe Mission can serve as the first step in-space for utilizing starshades to achieve NASA's grand goal of "Searching for Life Elsewhere."

Appendix A – Science Traceability Matrix

			Scientific Measurement	Scientific Measurement	Instrument Fun	ctional Requirements	Instrument Pr	edicted Performance	Mission Functional	Mission Functional			
Investigation	Goals	Objectives	Requirements: Physical Parameters	Requirements:	Starshade	WFIRST-CGI	Starshade	WFIRST-CGI	Requirements Common to				
Habitability and Biosignature Gases & The Nearest Solar System Analogs	 other stars, and explore whether they could harbor life. New Worlds, New Horizons (2010 Decadal Survey): Do habitable worlds exist around other stars, and can we identify the telltale signs of life on an exoplanet? Discovery area: Identification and characterization of nearby habitable exoplanets. Exoplanet Science Strategy (National Academies of Sciences 2018) Goal 2: to learn enough about the properties of exoplanets to identify potentially habitable environments and their frequency, and connect these environments to the planetary systems in which they reside. 	O1a: Determine whether super-Earth size or smaller exoplanets exist in the habitable zone around the nearest sunlike stars and have signatures of oxygen and water vapor in their atmospheres. O1b: Detect and characterize planets orbiting the nearest sunlike stars.	Exoplanet orbital properties: constrain planet's semi-major axis to the habitable zone of the star with >80% confidence. Abundance of atmospheric oxygen and water vapor: detect Earth-like abundances or greater.	ObservablesWater vapor absorption lineat 720 nm: detect currentEarth's atmosphere (15 nmwidth, $\geq 12\%$ depth) withSNR ≥ 20 with R=50.Oxygen absorption at760 nm: detect currentEarth's atmosphere (10 nmwidth, $\geq 65\%$ depth) withSNR ≥ 20 with R=50.Astrometric planet positionand time: capable of at least3 detections with ≤ 13 mas uncertainty (1 σ) in4 observations spread over2 years.Number of targets: ≥ 4 stars	StarshadeWFIRST-CGIInner working angle:≤103 masTelescope (WFIRST): PSF: 65 mas Collection area: 4.4 m²Instrument contrast ≤10 ⁻¹⁰ at angular distances greater than the inner working angle.Instrument (WFIRST-CGI): Imaging: Bandpass: 615–800 nm End-to-end efficiency: 2.4%Bandpass: ≥26% atSpectral:	tarshadeWFIRST-CGIwrking angle: asTelescope (WFIRST): PSF: 65 mas Collection area: 4.4 m²Inner 103 ment contrast t angular s greater than r workingInstrument (WFIRST-CGI): Imaging: Bandpass: 615–800 nm End-to-end efficiency: 2.4%Instru 4×10- distar than f angless: ≥26% atSpectral: End-to-end efficiency: 1.5% Bandpass: 656–800 nm R ≥ 50Band 700 nDetector: Noise rate: <10 counts/hour Field of view: 5,000 mas (radial)Band 700 n	WFIRST-CGITelescope (WFIRST): PSF:65 mas Collection area:4.4 m²Instrument (WFIRST-CGI):Imaging:Bandpass: 615–800 nmEnd-to-end efficiency: 2.4%Spectral:End-to-end efficiency: 1.5%Bandpass: 656–800 nmR ≥ 50 Detector:Noise rate: <10 counts/hour	Inner working angle: 103 mas Instrument contrast: 4×10 ⁻¹¹ at angular distances greater than the inner working angle. Bandpass: ≥ 26% at	WFIRST-CGI E: Telescope (WFIRST): PSF: 65 mas Collection area: 4.4 m ² : Instrument (WFIRST-CGI): Imaging: Bandpass: 615–800 nm End-to-end efficiency: 3.5%	le: Telescope (WFIRST): PSF: 65 mas Collection area: 4.4 m ² st: Instrument (WFIRST-CGI): Imaging: Bandpass: 615–800 nm End-to-end efficiency: 3.5% at Spectral: End-to-end efficiency: 2.5% Bandpass: 656–800 nm R = 50 Detector: Noise rate <10 counts/hour Field of view: 5,000 mas	nade WFIRST-CGI all Investi ng angle: Telescope (WFIRST): PSF: Field of regard: 65 mas Collection area: 4.4 m² 54–83 degrees 3 contrast: Instrument (WFIRST-CGI): Instrument equit to retarget within reater Bandpass: 615–800 nm Launch window: er working Spectral: Launch window: ≥ 26% at Spectral: End-to-end efficiency: 2.5% Bandpass: 656–800 nm R = 50 Detector: Noise rate <10 counts/hour	54–83 degrees Sun angle Slew time: requires the ability to retarget within 8 days Launch window: within	Investigation Observation time: >120 days for sufficient integration time over a duration of 2 years to track exoplanet orbits. Number of targets: at least 4 targets with 1 spectral measurement for absorption lines and 4 revisits over 2 years to constrain the exoplanet orbit. Observation time for each target: capability of up to 6 contiguous days (1 day on average) for imaging with the ability to trigger a 25-day observation within 5 days from the image.
Brightness of Zodiacal Dust Disks		O2: Establish if the zodiacal cloud of our inner solar system is representative of the population of our nearest neighbor stars.	Spatial distribution of dust disk surface brightness ≥0.5 zodi with 20% uncertainty with ≤0.5 AU resolution.	Flux sensitivity to <0.5 zodi with <20% uncertainty at Earth-equivalent insolation distance. Spatial resolution corresponding to 1 AU. Number of targets: ≥12 stars	Inner working angle: ≤103 mas Instrument contrast <=10 ⁻¹⁰ at angular distances greater than the inner working angle. Bandpass: ≥26% at 700 nm					Observation time: >10 days for sufficient integration time. (Note that this is in overlap with and not in addition to the habitability investigation). Number of targets: at least 10 visited at least once (note these targets are in overlap and not in addition to the habitability investigation). Observation time for each target: capability of up to 6 contiguous days for imaging (1 day average).			
Metallicity	Decadal Survey): • How diverse are planetary systems? Exoplanet Science Strategy (National Academies of Sciences)	O3: Determine the atmospheric metallicity of known cool giant planets to examine trends with planetary mass and orbital semi-major axis, and to determine if these trends are consistent with our solar system.	giant planet levels with uncertainty log(species/H) <=0.3. Orbit inclination with ≤ 15° [TBR]	Water vapor absorption line depth at 720 nm: measure (15 nm width, ≥30% depth) with SNR ≥15 with R=50. Methane absorption line depth at 730 nm and 790 nm (20 nm width, ≥20% depth) with SNR>=15 with R=50. Number of targets: ≥10 planets	≤103 mas. Instrument contrast ≤10 ⁻¹⁰ at angular distances greater than the inner working angle.					Observation time: >50 days for sufficient integration time. Number of targets: at least 10 targets with the capability of up to 25 days of observation (5 average). Note: the 10 targets are in addition to the habitability investigation. Observation time for each target: capability of up to 10 days.			

REFERENCES

- 1. Seager, S., Kasdin, J., et al., *Starshade Rendezvous Probe*, 2019; Report submitted to NASA; Available from <u>https://smd-prod.s3.amazonaws.com/science-red/s3fs-public/atoms/files/Starshade2.pdf</u>
- 2. Worlds, N., *New Horizons in Astronomy and Astrophysics, Committee for a Decadal Survey of Astronomy and Astrophysics; National Research Council, 2010.* 2010, The National Academies Press.
- 3. National Academies of Sciences, E. and Medicine, *Exoplanet Science Strategy*. 2018, Washington, DC: The National Academies Press. 202.
- 4. Seager, S., et al., *Exo-S: starshade probe-class exoplanet direct imaging mission concept final report.* available at exep. jpl. nasa. gov/stdt, 2015.
- 5. Spitzer, L., *The beginnings and future of space astronomy*. American Scientist, 1962. **50**(3): p. 473-484.
- 6. Copi, C.J. and G.D. Starkman, *The big occulting steerable satellite (boss)*. The Astrophysical Journal, 2000. **532**(1): p. 581.
- 7. Schultz, A.B. *High-Contrast Imaging for Exo- Planet Detection*. in *High-Contrast Imaging for Exo-Planet Detection*. 2003.
- 8. Cash, W., *Detection of Earth-like planets around nearby stars using a petal-shaped occulter*. Nature, 2006. **442**(7098): p. 51.
- 9. Cash, W., et al. *The New Worlds Observer: the astrophysics strategic mission concept study.* in *UV/Optical/IR Space Telescopes: Innovative Technologies and Concepts IV.* 2009. International Society for Optics and Photonics.
- 10. Kasdin, N.J., et al. Occulter design for THEIA. in Techniques and Instrumentation for Detection of Exoplanets IV. 2009. International Society for Optics and Photonics.
- 11. Webb, D., et al. Starshade mechanical architecture & technology effort. in 3rd AIAA Spacecraft Structures Conference. 2016.
- 12. Lawson, P.R., et al. On advanced estimation techniques for exoplanet detection and characterization using ground-based coronagraphs. in Adaptive Optics Systems III. 2012. International Society for Optics and Photonics.
- 13. Mawet, D., et al. *Review of small-angle coronagraphic techniques in the wake of groundbased second-generation adaptive optics systems.* in *Space Telescopes and Instrumentation* 2012: Optical, Infrared, and Millimeter Wave. 2012. International Society for Optics and Photonics.
- 14. Belikov, R., ExoPAG SAG13: Exoplanet Occurrence Rates and Distributions. 2017.
- 15. NASA. *Exoplanet Exploration Program Technology Overview*. 2018; Available from: <u>https://exoplanets.nasa.gov/exep/technology/technology-overview/</u>.
- 16. JPL, WFIRST Starshade Accommodations Interface Requirements Document, WFIRST-IRD-06650. 2018.