107 research outputs found
GALEX Observations of CS and OH Emission in Comet 9P/Tempel 1 During Deep Impact
GALEX observations of comet 9P/Tempel 1 using the near ultraviolet (NUV)
objective grism were made before, during and after the Deep Impact event that
occurred on 2005 July 4 at 05:52:03 UT when a 370 kg NASA spacecraft was
maneuvered into the path of the comet. The NUV channel provides usable spectral
information in a bandpass covering 2000 - 3400 A with a point source spectral
resolving power of approximately 100. The primary spectral features in this
range include solar continuum scattered from cometary dust and emissions from
OH and CS molecular bands centered near 3085 and 2575 A, respectively. In
particular, we report the only cometary CS emission detected during this event.
The observations allow the evolution of these spectral features to be tracked
over the period of the encounter. In general, the NUV emissions observed from
Tempel 1 are much fainter than those that have been observed by GALEX from
other comets. However, it is possible to derive production rates for the parent
molecules of the species detected by GALEX in Tempel 1 and to determine the
number of these molecules liberated by the impact. The derived quiescent
production rates are Q(H2O) = 6.4e27 molecules/s and Q(CS2) = 6.7e24
molecules/s, while the impact produced an additional 1.6e32 H2O molecules and
1.3e29 CS2 molecules, a similar ratio as in quiescent outgassing.Comment: 15 pages, 4 figures, accepted for publication in the Astrophysical
Journa
NASA Plum Brook's B-2 Test Facility: Thermal Vacuum and Propellant Test Facility
The National Aeronautics and Space Administration (NASA) Glenn Research Center (GRC) Plum Brook Station (PBS) Spacecraft Propulsion Research Facility, commonly referred to as B-2, is NASA's third largest thermal vacuum facility. It is the largest designed to store and transfer large quantities of liquid hydrogen and liquid oxygen, and is perfectly suited to support developmental testing of upper stage chemical propulsion systems as well as fully integrated stages. The facility is also capable of providing thermal-vacuum simulation services to support testing of large lightweight structures, Cryogenic Fluid Management (CFM) systems, electric propulsion test programs, and other In-Space propulsion programs. A recently completed integrated system test demonstrated the refurbished thermal vacuum capabilities of the facility. The test used the modernized data acquisition and control system to monitor the facility. The heat sink provided a uniform temperature environment of approximately 77 K. The modernized infrared lamp array produced a nominal heat flux of 1.4 kW/sq m. With the lamp array and heat sink operating simultaneously, the thermal systems produced a heat flux pattern simulating radiation to space on one surface and solar exposure on the other surface
Thermal Vacuum Integrated System Test at B-2
The National Aeronautics and Space Administration (NASA) Glenn Research Center (GRC) Plum Brook Station (PBS) Space Propulsion Research Facility, commonly referred to as B-2, is NASA s third largest thermal vacuum facility. It is the largest designed to store and transfer large quantities of liquid hydrogen and liquid oxygen, and is perfectly suited to support developmental testing of chemical propulsion systems as well as fully integrated stages. The facility is also capable of providing thermal-vacuum simulation services to support testing of large lightweight structures, Cryogenic Fluid Management (CFM) systems, electric propulsion test programs, and other In-Space propulsion programs. A recently completed integrated system test demonstrated the refurbished thermal vacuum capabilities of the facility. The test used the modernized data acquisition and control system to monitor the facility during pump down of the vacuum chamber, operation of the liquid nitrogen heat sink (or cold wall) and the infrared lamp array. A vacuum level of 1.3x10(exp -4)Pa (1x10(exp -6)torr) was achieved. The heat sink provided a uniform temperature environment of approximately 77 K (140deg R) along the entire inner surface of the vacuum chamber. The recently rebuilt and modernized infrared lamp array produced a nominal heat flux of 1.4 kW/sq m at a chamber diameter of 6.7 m (22 ft) and along 11 m (36 ft) of the chamber s cylindrical vertical interior. With the lamp array and heat sink operating simultaneously, the thermal systems produced a heat flux pattern simulating radiation to space on one surface and solar exposure on the other surface. The data acquired matched pretest predictions and demonstrated system functionality
NASA Low-speed Axial Compressor for Fundamental Research
A low-speed multistage axial compressor built by the NASA Lewis Research Center is described. The purpose of this compressor is to increase the understanding of the complex flow phenomena within multistage axial compressors and to obtain detailed data from a multistage compressor environment for use in developing and verifying models for computational fluid dynamic code assessment. The compressor has extensive pressure instrumentation in both stationary and rotating frames of reference, and has provisions for flow visualization and laser velocimetry. The compressor will accommodate rotational speeds to 1050 rpm and is rated at a pressure ratio of 1.042
The Nature and Frequency of the Gas Outbursts in Comet 67P/Churyumov-Gerasimenko observed by the Alice Far-ultraviolet Spectrograph on Rosetta
Alice is a far-ultraviolet imaging spectrograph onboard Rosetta that, amongst
multiple objectives, is designed to observe emissions from various atomic and
molecular species from within the coma of comet 67P/Churyumov-Gerasimenko. The
initial observations, made following orbit insertion in August 2014, showed
emissions of atomic hydrogen and oxygen spatially localized close to the
nucleus and attributed to photoelectron impact dissociation of H2O vapor.
Weaker emissions from atomic carbon were subsequently detected and also
attributed to electron impact dissociation, of CO2, the relative H I and C I
line intensities reflecting the variation of CO2 to H2O column abundance along
the line-of-sight through the coma. Beginning in mid-April 2015, Alice
sporadically observed a number of outbursts above the sunward limb
characterized by sudden increases in the atomic emissions, particularly the
semi-forbidden O I 1356 multiplet, over a period of 10-30 minutes, without a
corresponding enhancement in long wavelength solar reflected light
characteristic of dust production. A large increase in the brightness ratio O I
1356/O I 1304 suggests O2 as the principal source of the additional gas. These
outbursts do not correlate with any of the visible images of outbursts taken
with either OSIRIS or the navigation camera. Beginning in June 2015 the nature
of the Alice spectrum changed considerably with CO Fourth Positive band
emission observed continuously, varying with pointing but otherwise fairly
constant in time. However, CO does not appear to be a major driver of any of
the observed outbursts.Comment: 6 pages, 4 figures, accepted for publication in the Astrophysical
Journal Letter
NASA Plum Brook Station In-Space Propulsion Facility Test Stand Characterization Hot Fire Test
A test facility modification to enable small scale altitude propulsion testing at the NASA Glenn Research Center's In-Space Propulsion (ISP) Facility was verified with a hot fire test campaign. As the facility's primary steam supply system undergoes refurbishment, the alternate facility configuration, known as the "vacuum accumulator" mode, would enable rocket engine testing up to 10,000 lbf thrust. The NASA Johnson Space Center developed the vehicle for the verification test campaign: the Integrated Cryogenic Propulsion Test Article (ICPTA). Constructed primarily from assets of the former Morpheus Project, the ICPTA provided an integrated liquid oxygen (LOX) / liquid methane (LCH4) propulsion system including a 2,800 lbf thrust main engine. The ISP Facility's vacuum accumulator configuration leveraged the large test volume of the facility and a diffuser insert to maintain altitude conditions. During hot fire, the ICPTA main engine "started" the diffuser insert constructed for the test campaign. As a result, the test chamber upstream of the diffuser insert remained at altitude conditions throughout the hot fire. Upon engine shut down, a backflow deflector mitigated blow back into the test chamber by restricting the mass flow and redirecting it away from the test article. The test campaign successfully characterized the performance of the vacuum accumulator configuration. In addition, it provided an opportunity to collect data for an integrated LOX / LCH4 propulsion system in an altitude and thermal vacuum environment
Space Propulsion Research Facility (B-2): An Innovative, Multi-Purpose Test Facility
The Space Propulsion Research Facility, commonly referred to as B-2, is designed to hot fire rocket engines or upper stage launch vehicles with up to 890,000 N force (200,000 lb force), after environmental conditioning of the test article in simulated thermal vacuum space environment. As NASA s third largest thermal vacuum facility, and the largest designed to store and transfer large quantities of propellant, it is uniquely suited to support developmental testing associated with large lightweight structures and Cryogenic Fluid Management (CFM) systems, as well as non-traditional propulsion test programs such as Electric and In-Space propulsion. B-2 has undergone refurbishment of key subsystems to support the NASA s future test needs, including data acquisition and controls, vacuum, and propellant systems. This paper details the modernization efforts at B-2 to support the Nation s thermal vacuum/propellant test capabilities, the unique design considerations implemented for efficient operations and maintenance, and ultimately to reduce test costs
Hubble Space Telescope Observations of Comet 9P/Tempel 1 during the Deep Impact Encounter
We report on the Hubble Space Telescope program to observe periodic comet
9P/Tempel 1 in conjunction with NASA's Deep Impact mission. Our objectives were
to study the generation and evolution of the coma resulting from the impact and
to obtain wide-band images of the visual outburst generated by the impact. Two
observing campaigns utilizing a total of 17 HST orbits were carried out: the
first occurred on 2005 June 13-14 and fortuitously recorded the appearance of a
new, short-lived fan in the sunward direction on June 14. The principal
campaign began two days before impact and was followed by contiguous orbits
through impact plus several hours and then snapshots one, seven, and twelve
days later. All of the observations were made using the Advanced Camera for
Surveys (ACS). For imaging, the ACS High Resolution Channel (HRC) provides a
spatial resolution of 36 km (16 km/pixel) at the comet at the time of impact.
Baseline images of the comet, made prior to impact, photometrically resolved
the comet's nucleus. The derived diameter, 6.1 km, is in excellent agreement
with the 6.0 +/- 0.2 km diameter derived from the spacecraft imagers. Following
the impact, the HRC images illustrate the temporal and spatial evolution of the
ejecta cloud and allow for a determination of its expansion velocity
distribution. One day after impact the ejecta cloud had passed out of the
field-of-view of the HRC.Comment: 15 pages, 14 postscript figures. Accepted for publication in Icarus
special issue on Deep Impac
NASA Plum Brook Station Spacecraft Propulsion Research Facility (B-2): An Innovative Multi-Purpose Test Facility
No abstract availabl
- …