118 research outputs found

    A system reliability analysis for stand-by spares with non-zero unpowered failure rates

    Get PDF
    Equations which define the reliability of n-fold parallel systems with stand-by spares, and triply redundant, majority-voting systems with stand-by spares have been derived. The stand-by spares have been assumed to have a non-zero failure rate while in the stand-by mode. A Monte Carlo system simulation has been generated and the results compared to the theoretical reliability predictions. A comparison of these two stand-by configurations is also presented for three through six total units

    Comparing regional organizations in global multilateral institutions:ASEAN, the EU and the UN

    Get PDF
    Structural change brought about by the end of the Cold War and accelerated globalisation have transformed the global environment. A global governance complex is emerging, characterised by an ever-greater functional and regulatory role for multilateral organisations such as the United Nations (UN) and its associated agencies. The evolving global governance framework has created opportunities for regional organisations to participate as actors within the UN (and other multilateral institutions). This article compares the European Union (EU) and Association of Southeast Asian Nations (ASEAN) as actors within the UN network. It begins by extrapolating framework conditions for the emergence of EU and ASEAN actorness from the literature. The core argument of this article is that EU and ASEAN actorness is evolving in two succinct stages: Changes in the global environment create opportunities for the participation of regional organisations in global governance institutions, exposing representation and cohesion problems at the regional level. In response, ASEAN and the EU have initiated processes of institutional adaptation

    Divergent transcriptional activities determine limb identity

    Get PDF
    Limbs develop using a common genetic programme despite widely differing morphologies. This programme is modulated by limb-restricted regulators such as hindlimb (HL) transcription factors Pitx1 and Tbx4 and the forelimb (FL) Tbx5. Both Tbx factors have been implicated in limb patterning and growth, but their relative activities and underlying mechanisms remain unclear. In this paper, we show that Tbx4 and Tbx5 harbour conserved and divergent transcriptional regulatory domains that account for their roles in limb development. In particular, both factors share an activator domain and the ability to stimulate limb growth. However, we find that Tbx4 is the primary effector of HL identity for both skeletal and muscle development; this activity relies on a repressor domain that is inactivated by a human TBX4 small-patella syndrome mutation. We propose that limb identity is largely achieved by default in FL, whereas a specific repressor activity unique to Tbx4 determines HL identity

    Meltrin β/ADAM19 Interacting with EphA4 in Developing Neural Cells Participates in Formation of the Neuromuscular Junction

    Get PDF
    BACKGROUND: Development of the neuromuscular junction (NMJ) is initiated by the formation of postsynaptic specializations in the central zones of muscles, followed by the arrival of motor nerve terminals opposite the postsynaptic regions. The post- and presynaptic components are then stabilized and modified to form mature synapses. Roles of ADAM (A Disintegrin And Metalloprotease) family proteins in the formation of the NMJ have not been reported previously. PRINCIPAL FINDINGS: We report here that Meltrin beta, ADAM19, participates in the formation of the NMJ. The zone of acetylcholine receptor alpha mRNA distribution was broader and excess sprouting of motor nerve terminals was more prominent in meltrin beta-deficient than in wild-type embryonic diaphragms. A microarray analysis revealed that the preferential distribution of ephrin-A5 mRNA in the synaptic region of muscles was aberrant in the meltrin beta-deficient muscles. Excess sprouting of motor nerve terminals was also found in ephrin-A5 knockout mice, which lead us to investigate a possible link between Meltrin beta and ephrin-A5-Eph signaling in the development of the NMJ. Meltrin beta and EphA4 interacted with each other in developing motor neurons, and both of these proteins localized in the NMJ. Coexpression of Meltrin beta and EphA4 strongly blocked vesicular internalization of ephrin-A5-EphA4 complexes without requiring the protease activity of Meltrin beta, suggesting a regulatory role of Meltrin beta in ephrin-A5-Eph signaling. CONCLUSION: Meltrin beta plays a regulatory role in formation of the NMJ. The endocytosis of ephrin-Eph complexes is required for efficient contact-dependent repulsion between ephrin and Eph. We propose that Meltrin beta stabilizes the interaction between ephrin-A5 and EphA4 by regulating endocytosis of the ephrinA5-EphA complex negatively, which would contribute to the fine-tuning of the NMJ during development

    Pre-Bilaterian Origins of the Hox Cluster and the Hox Code: Evidence from the Sea Anemone, Nematostella vectensis

    Get PDF
    BACKGROUND: Hox genes were critical to many morphological innovations of bilaterian animals. However, early Hox evolution remains obscure. Phylogenetic, developmental, and genomic analyses on the cnidarian sea anemone Nematostella vectensis challenge recent claims that the Hox code is a bilaterian invention and that no “true” Hox genes exist in the phylum Cnidaria. METHODOLOGY/PRINCIPAL FINDINGS: Phylogenetic analyses of 18 Hox-related genes from Nematostella identify putative Hox1, Hox2, and Hox9+ genes. Statistical comparisons among competing hypotheses bolster these findings, including an explicit consideration of the gene losses implied by alternate topologies. In situ hybridization studies of 20 Hox-related genes reveal that multiple Hox genes are expressed in distinct regions along the primary body axis, supporting the existence of a pre-bilaterian Hox code. Additionally, several Hox genes are expressed in nested domains along the secondary body axis, suggesting a role in “dorsoventral” patterning. CONCLUSIONS/SIGNIFICANCE: A cluster of anterior and posterior Hox genes, as well as ParaHox cluster of genes evolved prior to the cnidarian-bilaterian split. There is evidence to suggest that these clusters were formed from a series of tandem gene duplication events and played a role in patterning both the primary and secondary body axes in a bilaterally symmetrical common ancestor. Cnidarians and bilaterians shared a common ancestor some 570 to 700 million years ago, and as such, are derived from a common body plan. Our work reveals several conserved genetic components that are found in both of these diverse lineages. This finding is consistent with the hypothesis that a set of developmental rules established in the common ancestor of cnidarians and bilaterians is still at work today
    corecore