21 research outputs found

    Incomplete Protection against Dengue Virus Type 2 Re-infection in Peru

    Get PDF
    © 2016 Public Library of Science. All Rights Reserved. Background: Nearly half of the world’s population is at risk for dengue, yet no licensed vaccine or anti-viral drug is currently available. Dengue is caused by any of four dengue virus serotypes (DENV-1 through DENV-4), and infection by a DENV serotype is assumed to provide life-long protection against re-infection by that serotype. We investigated the validity of this fundamental assumption during a large dengue epidemic caused by DENV-2 in Iquitos, Peru, in 2010–2011, 15 years after the first outbreak of DENV-2 in the region. Methodology/Principal Findings: We estimated the age-dependent prevalence of serotype-specific DENV antibodies from longitudinal cohort studies conducted between 1993 and 2010. During the 2010–2011 epidemic, active dengue cases were identified through active community- and clinic-based febrile surveillance studies, and acute inapparent DENV infections were identified through contact tracing studies. Based on the age-specific prevalence of DENV-2 neutralizing antibodies, the age distribution of DENV-2 cases was markedly older than expected. Homologous protection was estimated at 35.1% (95% confidence interval: 0%–65.2%). At the individual level, pre-existing DENV-2 antibodies were associated with an incomplete reduction in the frequency of symptoms. Among dengue cases, 43% (26/66) exhibited elevated DENV-2 neutralizing antibody titers for years prior to infection, compared with 76% (13/17) of inapparent infections (age-adjusted odds ratio: 4.2; 95% confidence interval: 1.1–17.7). Conclusions/Significance: Our data indicate that protection from homologous DENV re-infection may be incomplete in some circumstances, which provides context for the limited vaccine efficacy against DENV-2 in recent trials. Further studies are warranted to confirm this phenomenon and to evaluate the potential role of incomplete homologous protection in DENV transmission dynamics

    Long-Term and Seasonal Dynamics of Dengue in Iquitos, Peru

    Get PDF
    <div><p>Introduction</p><p>Long-term disease surveillance data provide a basis for studying drivers of pathogen transmission dynamics. Dengue is a mosquito-borne disease caused by four distinct, but related, viruses (DENV-1-4) that potentially affect over half the world's population. Dengue incidence varies seasonally and on longer time scales, presumably driven by the interaction of climate and host susceptibility. Precise understanding of dengue dynamics is constrained, however, by the relative paucity of laboratory-confirmed longitudinal data.</p><p>Methods</p><p>We studied 10 years (2000–2010) of laboratory-confirmed, clinic-based surveillance data collected in Iquitos, Peru. We characterized inter and intra-annual patterns of dengue dynamics on a weekly time scale using wavelet analysis. We explored the relationships of case counts to climatic variables with cross-correlation maps on annual and trimester bases.</p><p>Findings</p><p>Transmission was dominated by single serotypes, first DENV-3 (2001–2007) then DENV-4 (2008–2010). After 2003, incidence fluctuated inter-annually with outbreaks usually occurring between October and April. We detected a strong positive autocorrelation in case counts at a lag of ∼70 weeks, indicating a shift in the timing of peak incidence year-to-year. All climatic variables showed modest seasonality and correlated weakly with the number of reported dengue cases across a range of time lags. Cases were reduced after citywide insecticide fumigation if conducted early in the transmission season.</p><p>Conclusions</p><p>Dengue case counts peaked seasonally despite limited intra-annual variation in climate conditions. Contrary to expectations for this mosquito-borne disease, no climatic variable considered exhibited a strong relationship with transmission. Vector control operations did, however, appear to have a significant impact on transmission some years. Our results indicate that a complicated interplay of factors underlie DENV transmission in contexts such as Iquitos.</p></div

    Expected versus observed DENV-2 and DENV-4 cases.

    No full text
    <p>The observed age distribution of cases of DENV-2 (dark green in panels A, C, and D) and DENV-4 (dark purple in panel B). Using the ages of all febrile individuals that participated in a clinic-based febrile surveillance study[<a href="http://www.plosntds.org/article/info:doi/10.1371/journal.pntd.0004398#pntd.0004398.ref017" target="_blank">17</a>], we built an empirical estimate of the age distribution of individuals who sought treatment in Iquitos. By multiplying this distribution by the age-specific percent of the population with serotype-specific dengue antibodies, we created serotype-specific expected age distributions of cases for DENV-2 and DENV-4 (light green in panel A and light purple in panel B). We then adjusted the age- and serotype-specific immune levels and recalculated expected age distributions of cases for DENV-2 by assuming, across all ages, either 25% or 50% of those who should have been immune were still susceptible to DENV-2 (light green in panel C and light green in panel D, respectively).</p

    DENV-1 and DENV-2 neutralizing antibody prevalence by year and birth cohort.

    No full text
    <p>Samples were collected from longitudinal cohort studies conducted in Iquitos between 1993 and 2010. Panel A: DENV-1 neutralizing antibody prevalence by year, based on birth cohorts. Panel B: DENV-2 neutralizing antibody prevalence by year, based on birth cohorts.</p
    corecore