242 research outputs found

    Ocular Phenotype Associated with DYRK1A Variants

    Get PDF
    Dual-specificity tyrosine phosphorylation-regulated kinase 1A or DYRK1A, contributes to central nervous system development in a dose-sensitive manner. Triallelic DYRK1A is implicated in the neuropathology of Down syndrome, whereas haploinsufficiency causes the rare DYRK1A-related intellectual disability syndrome (also known as mental retardation 7). It is characterised by intellectual disability, autism spectrum disorder and microcephaly with a typical facial gestalt. Preclinical studies elucidate a role for DYRK1A in eye development and case studies have reported associated ocular pathology. In this study families of the DYRK1A Syndrome International Association were asked to self-report any co-existing ocular abnormalities. Twenty-six patients responded but only 14 had molecular confirmation of a DYRK1A pathogenic variant. A further nineteen patients from the UK Genomics England 100,000 Genomes Project were identified and combined with 112 patients reported in the literature for further analysis. Ninety out of 145 patients (62.1%) with heterozygous DYRK1A variants revealed ocular features, these ranged from optic nerve hypoplasia (13%, 12/90), refractive error (35.6%, 32/90) and strabismus (21.1%, 19/90). Patients with DYRK1A variants should be referred to ophthalmology as part of their management care pathway to prevent amblyopia in children and reduce visual comorbidity, which may further impact on learning, behaviour, and quality of life

    Rainwater harvesting: environmentally beneficial for the UK?

    Get PDF
    Rainwater harvesting (RWH) feels right from a long-term sustainability perspective. Short-cutting the hydrological cycle seems to make logical sense from an environmental stance, and the technique is being driven into new buildings in the United Kingdom (UK) through building rating systems which are in turn pushed by government policy. However, little work has been done to assess its environmental credentials from a whole life perspective. Controversially, those studies that have been done have found that RWH systems tend to have greater environmental impacts than mains supply infrastructure. This work seeks to investigate the latest studies, and provide a way forward in the debate

    The response of perennial and temporary headwater stream invertebrate communities to hydrological extremes

    Get PDF
    The headwaters of karst rivers experience considerable hydrological variability, including spates and streambed drying. Extreme summer flooding on the River Lathkill (Derbyshire, UK) provided the opportunity to examine the invertebrate community response to unseasonal spate flows, flow recession and, at temporary sites, streambed drying. Invertebrates were sampled at sites with differing flow permanence regimes during and after the spates. Following streambed drying at temporary sites, dewatered surface sediments were investigated as a refugium for aquatic invertebrates. Experimental rehydration of these dewatered sediments was conducted to promote development of desiccation-tolerant life stages. At perennial sites, spate flows reduced invertebrate abundance and diversity, whilst at temporary sites, flow reactivation facilitated rapid colonisation of the surface channel by a limited number of invertebrate taxa. Following streambed drying, 38 taxa were recorded from the dewatered and rehydrated sediments, with Oligochaeta being the most abundant taxon and Chironomidae (Diptera) the most diverse. Experimental rehydration of dewatered sediments revealed the presence of additional taxa, including Stenophylax sp. (Trichoptera: Limnephilidae) and Nemoura sp. (Plecoptera: Nemouridae). The influence of flow permanence on invertebrate community composition was apparent despite the aseasonal high-magnitude flood events

    Coevolved mutations reveal distinct architectures for two core proteins in the bacterial flagellar motor

    Get PDF
    Switching of bacterial flagellar rotation is caused by large domain movements of the FliG protein triggered by binding of the signal protein CheY to FliM. FliG and FliM form adjacent multi-subunit arrays within the basal body C-ring. The movements alter the interaction of the FliG C-terminal (FliGC) "torque" helix with the stator complexes. Atomic models based on the Salmonella entrovar C-ring electron microscopy reconstruction have implications for switching, but lack consensus on the relative locations of the FliG armadillo (ARM) domains (amino-terminal (FliGN), middle (FliGM) and FliGC) as well as changes during chemotaxis. The generality of the Salmonella model is challenged by the variation in motor morphology and response between species. We studied coevolved residue mutations to determine the unifying elements of switch architecture. Residue interactions, measured by their coevolution, were formalized as a network, guided by structural data. Our measurements reveal a common design with dedicated switch and motor modules. The FliM middle domain (FliMM) has extensive connectivity most simply explained by conserved intra and inter-subunit contacts. In contrast, FliG has patchy, complex architecture. Conserved structural motifs form interacting nodes in the coevolution network that wire FliMM to the FliGC C-terminal, four-helix motor module (C3-6). FliG C3-6 coevolution is organized around the torque helix, differently from other ARM domains. The nodes form separated, surface-proximal patches that are targeted by deleterious mutations as in other allosteric systems. The dominant node is formed by the EHPQ motif at the FliMMFliGM contact interface and adjacent helix residues at a central location within FliGM. The node interacts with nodes in the N-terminal FliGc α-helix triad (ARM-C) and FliGN. ARM-C, separated from C3-6 by the MFVF motif, has poor intra-network connectivity consistent with its variable orientation revealed by structural data. ARM-C could be the convertor element that provides mechanistic and species diversity.JK was supported by Medical Research Council grant U117581331. SK was supported by seed funds from Lahore University of Managment Sciences (LUMS) and the Molecular Biology Consortium

    Direct and indirect interactions between ants ( Pheidole megacephala ), scales ( Coccus viridis ) and plants ( Pluchea indica )

    Full text link
    This study investigated direct and indirect interactions between the ant, Pheidole megacephala (Fabr.), the green scale, Coccus viridis (Green), and the scale's host plant, Pluchea indica (L.). To examine the influence of ants on scales and host plants, scale population densities, scale mortality rates, and plant performance were studied on control host plants with ants and host plants from which ants had been removed. Plants with ants present had significantly greater scale population densities and scale reproductive rates than did plants without ants. Scale mortality from both parasitism and other causes was increased on plants without ants relative to plants with ants. Predator introduction experiments showed that P. megacephala removes predatory coccinellid larvae, even when they are covered with a protective coating. Host plants from which ants had been removed had significantly higher degrees of honeydew accumulation, which resulted in greater colonization by sooty mold and greater rates of leaf death and abscission. Ants also removed herbivorous lepidopteran larvae from plants. Results are discussed in terms of the potential of P. megacephala to exert direct and indirect positive effects on scale populations and an indirect positive effect on Pluchea indica .Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/47790/1/442_2004_Article_BF00325261.pd

    Crisis Visits and Psychiatric Hospitalizations Among Patients Attending a Community Clinic in Rural Southern California

    Get PDF
    Ethnic minorities from disadvantaged socioeconomic backgrounds report increased utilization of mental health emergency services; however findings have been inconsistent across ethnic/racial groups. In this study we describe patients who present to a rural crisis unit in Southern California, examine rates of psychiatric hospitalizations across ethnic/racial groups, and investigate factors that are associated with increased psychiatric hospitalizations in this sample. This is a retrospective study of 451 racially and ethnically diverse patients attending a crisis unit in Imperial County, California. Chart review and data abstraction methods were used to characterize the sample and identify factors associated with psychiatric crises and subsequent hospitalizations. The sample was predominantly Latino/Hispanic (58.5%). Based on chart review, common psychosocial stressors which prompted a crisis center visit were: (a) financial problems; (b) homelessness; (c) partner or family conflict; (d) physical and health problems; (e) problems at school/work; (f) medication compliance; (g) aggressive behavior; (h) delusional behavior; (i) addiction and (j) anxiety/depression. Bivariate analyses revealed that Hispanics had a disproportionately lower rate of psychiatric hospitalizations while African Americans had a higher rate. Multivariate analyses which included demographic, clinical and psychosocial stressor variables revealed that being African American, having a psychotic disorder, and presenting as gravely disabled were associated with a higher likelihood of hospitalization while partner/family conflict was associated with a lesser likelihood in this rural community. These data elucidate the need for longitudinal studies to understand the interactions between psychosocial stressors, ethnicity and social support as determinants of psychiatric hospitalizations

    Pioglitazone administration alters ovarian gene expression in aging obese lethal yellow mice

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Women with polycystic ovary syndrome (PCOS) are often treated with insulin-sensitizing agents, e.g. thiazolidinediones (TZD), which have been shown to reduce androgen levels and improved ovulatory function. Acting via peroxisome proliferator-activated receptor (PPAR) gamma, TZD alter the expression of a large variety of genes. Lethal yellow (LY; C57BL/6J Ay/a) mice, possessing a mutation (Ay) in the agouti gene locus, exhibit progressive obesity, reproductive dysfunction, and altered metabolic regulation similar to women with PCOS. The current study was designed to test the hypothesis that prolonged treatment of aging LY mice with the TZD, pioglitazone, alters the ovarian expression of genes that may impact reproduction.</p> <p>Methods</p> <p>Female LY mice received daily oral doses of either 0.01 mg pioglitazone (n = 4) or an equal volume of vehicle (DMSO; n = 4) for 8 weeks. At the end of treatment, ovaries were removed and DNA microarrays were used to analyze differential gene expression.</p> <p>Results</p> <p>Twenty-seven genes showed at least a two-fold difference in ovarian expression with pioglitazone treatment. These included leptin, angiopoietin, angiopoietin-like 4, Foxa3, PGE1 receptor, resistin-like molecule-alpha (RELM), and actin-related protein 6 homolog (ARP6). For most altered genes, pioglitazone changed levels of expression to those seen in untreated C57BL/6J(a/a) non-mutant lean mice.</p> <p>Conclusion</p> <p>TZD administration may influence ovarian function via numerous diverse mechanisms that may or may not be directly related to insulin/IGF signaling.</p

    Hybridization in human evolution: Insights from other organisms

    Full text link
    During the late Pleistocene, isolated lineages of hominins exchanged genes thus influencing genomic variation in humans in both the past and present. However, the dynamics of this genetic exchange and associated phenotypic consequences through time remain poorly understood. Gene exchange across divergent lineages can result in myriad outcomes arising from these dynamics and the environmental conditions under which it occurs. Here we draw from our collective research across various organisms, illustrating some of the ways in which gene exchange can structure genomic/phenotypic diversity within/among species. We present a range of examples relevant to questions about the evolution of hominins. These examples are not meant to be exhaustive, but rather illustrative of the diverse evolutionary causes/consequences of hybridization, highlighting potential drivers of human evolution in the context of hybridization including: influences on adaptive evolution, climate change, developmental systems, sex-differences in behavior, Haldane’s rule and the large X-effect, and transgressive phenotypic variation.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/151330/1/evan21787.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/151330/2/evan21787_am.pd

    Temperature- and Touch-Sensitive Neurons Couple CNG and TRPV Channel Activities to Control Heat Avoidance in Caenorhabditis elegans

    Get PDF
    Background: Any organism depends on its ability to sense temperature and avoid noxious heat. The nematode Caenorhabditis elegans responds to noxious temperatures exceeding,35uC and also senses changes in its environmental temperature in the range between 15 and 25uC. The neural circuits and molecular mechanisms involved in thermotaxis have been successfully studied, whereas details of the thermal avoidance behavior remain elusive. In this work, we investigate neurological and molecular aspects of thermonociception using genetic, cell biological and physiological approaches. Methodology/Principal Findings: We show here that the thermosensory neurons AFD, in addition to sensing temperature within the range within which the animals can thrive, also contribute to the sensation of noxious temperatures resulting in a reflex-like escape reaction. Distinct sets of interneurons are involved in transmitting thermonociception and thermotaxis, respectively. Loss of AFD is partially compensated by the activity of a pair of multidendritic, polymodal neurons, FLP, whereas laser ablation of both types of neurons abrogated the heat response in the head of the animals almost completely. A third pair of heat sensory neurons, PHC, is situated in the tail. We find that the thermal avoidance response requires the cell autonomous function of cGMP dependent Cyclic Nucleotide-Gated (CNG) channels in AFD, and the heat- and capsaicinsensitive Transient Receptor Potential Vanilloid (TRPV) channels in the FLP and PHC sensory neurons. Conclusions/Significance: Our results identify distinct thermal responses mediated by a single neuron, but also show tha

    The Role of Circulating Serotonin in the Development of Chronic Obstructive Pulmonary Disease

    Get PDF
    BACKGROUND: Cigarette smoking is a major risk factor in the development of age-related chronic obstructive pulmonary disease (COPD). The serotonin transporter (SERT) gene polymorphism has been reported to be associated with COPD, and the degree of cigarette smoking has been shown to be a significant mediator in this relationship. The interrelation between circulating serotonin (5-hydroxytyptamine, 5-HT), cigarette smoking and COPD is however largely unknown. The current study aimed at investigating the mediation effects of plasma 5-HT on cigarette smoking-induced COPD and the relation between plasma 5-HT levels and age. METHODS: The association between plasma 5-HT, age and COPD was analyzed in a total of 62 COPD patients (ever-smokers) and 117 control subjects (healthy non-smokers and ever-smokers). Plasma 5-HT levels were measured by enzyme-linked immuno assay (EIA). RESULTS: The elevated plasma 5-HT levels were significantly associated with increased odds for COPD (OR = 1.221, 95% CI = 1.123 to 1.319, p<0.0001). The effect remained significant after being adjusted for age and pack-years smoked (OR = 1.271, 95% CI = 1.134 to 1.408, p = 0.0003). Furthermore, plasma 5-HT was found to mediate the relation between pack-years smoked and COPD. A positive correlation (r = 0.303, p = 0.017) was found between plasma 5-HT levels and age in COPD, but not in the control subjects (r = -0.149, p = 0.108). CONCLUSION: Our results suggest that cigarette smoke-induced COPD is partially mediated by the plasma levels of 5-HT, and that these become elevated with increased age in COPD. The elevated plasma 5-HT levels in COPD might contribute to the pathogenesis of this disease.published_or_final_versio
    corecore