8 research outputs found

    Visualizing the Social in Aquaculture: How Social Dimension Components Illustrate the Effects of Aquaculture across Geographic Scales

    Get PDF
    Until very recently, governments of many countries, as well as their supporting organizations, have primarily addressed the biological, technical and economic aspects of aquaculture. In contrast, social and cultural aspects of aquaculture production have taken a backseat. Drawing on the observation that aquaculture development in Western Societies has largely failed to address these social effects across different scales and contexts, this paper offers a new way of capturing and visualising the diverse social dimensions of aquaculture. It does so by testing the ability to operationalise a set of social dimensions based on categories and indicators put forward by the United Nations, using several case studies across the North Atlantic. Local/regional stakeholder knowledge realms are combined with scientific expert knowledge to assess aquaculture operations against these indicators. The approach indicates that one needs to have a minimum farm size in order to have an impact of a visible scale for the different social dimension categories. While finfish aquaculture seems to be more social impactful than rope mussel farming, the latter can hold important cultural values and contribute to place-based understanding, connecting people with place and identity, thus playing a vital role in maintaining the working waterfront identity. It could be shown that aquaculture boosts a potential significant pull-factor to incentivise people to remain in the area, keeping coastal communities viable. By visualising the social effects of aquaculture, a door may be opened for new narratives on the sustainability of aquaculture that render social license and social acceptability more positive

    Prediction of Ship Resonant Rolling - Related Dangerous Zones with Regard to the Equivalent Metacentric Height Governing Natural Frequency of Roll

    No full text
    Potentially dangerous zones corresponding to dynamical stability phenomena, possibly encountered by ships sailing in rough sea, are estimated nowadays with the use of the method recommended by IMO in the guidance coded MSC.1/Circ.1228. In this IMO method the parameter governing the natural period of roll is the initial metacentric height. Some earlier studies revealed that the initial metacentric height which is commonly in use on-board ships for the purpose of performing the MSC.1/Circ.1228-recommended calculations, may significantly vary from the so called equivalent metacentric height obtained for large amplitudes of ship’s roll. In the light of such ascertainment, the paper deals with resultant resonance roll zones locations with regard to the equivalent metacentric height concept remaining appropriate for large amplitudes of roll. The noteworthy transfer of the resonance zones location is disclosed which reflects the distinct configurations of potentially dangerous ship’s course and speed configurations than could be predicted on the basis the initial metacentric height

    Determination of Parameters Describing the Risk Areas of Ships Chaotic Rolling on the Example of LNG Carrier and OSV Vessel

    No full text
    One of the significant problems in the safe operation of vessels is the behavior of the ship on the wave. Of all degrees of freedom, the greatest threat to the safety of a ship is associated with excessive rolling. One of the best methods to improve the safety of a ship in this field is to carry out experiments on the ship model, performed at her design stage. The problem is that the model tests are costly. An alternative is to conduct simulation tests based on numerical models. The primary goal of the article is to present the results of the simulation regarding the determination of parameters describing the risk areas of chaotic rolling for the ship designed for transporting liquefied natural gas (LNG carrier) and offshore support vessel (OSV). The first discusses the state of knowledge on mathematical modeling of oscillations. Then, the theory of nonlinear differential equations is presented, and the mathematical model of ship rolling is described. This model is used to prepare and conduct a numerical simulation in the Mathematica package. The results of these studies and their discussion constitute the central part of the article. Finally, the conclusions are presented

    Multiband VAE : latent space alignment for knowledge consolidation in continual learning

    No full text
    corecore