25 research outputs found

    Nonlinear absorption and nonlinear refraction: Maximizing the merit factors

    Get PDF
    Both nonlinear absorption and nonlinear refraction are effects that are potentially useful for a plethora of applications in photonics, nanophotonics and biophotonics. Despite substantial attention given to these phenomena by researchers studying the merits of disparate systems such as organic materials, hybrid materials, metal-containing molecules and nanostructures, it is virtually impossible to compare the results obtained on different materials when varying parameters of the light beams and different techniques are employed. We have attempted to address the problem by studying the properties of various systems in a systematic way, within a wide range of wavelengths, and including the regions of onephoton, two-photon and three-photon absorption. The objects of our studies have been typical nonlinear chromophores, such as π-conjugated molecules, oligomers and polymers, organometallics and coordination complexes containing transition metals, organometallic dendrimers, small metal-containing clusters, and nanoparticles of various kinds, including semiconductor quantum dots, plasmonic particles and rare-earth doped nanocrystals. We discuss herein procedures to quantify the nonlinear response of all of these systems, by defining and comparing the merit factors relevant for various applications

    Hybrid Theranostic Cubosomes for Efficient NIR-Induced Photodynamic Therapy

    No full text
    In recent years, lipid bicontinuous cubic liquid-crystalline nanoparticles known as cubosomes have been under investigation because of their favorable properties as drug nanocarriers useful for anticancer treatments. Herein, we present organic/inorganic hybrid, theranostic cubosomes stabilized in water with a shell of alternate layers of chitosan, single strand DNA (model genetic material for potential gene therapy), and folic acid-chitosan conjugate (the outmost layer), coencapsulating up-converting Er3+ and Yb3+ codoped NaYF4 nanoparticles and daunorubicin. The latter acts as a chemotherapeutic drug of photosensitizing activity, while up-converting nanoparticles serve as energy harvester and diagnostic agent. Cellular uptake and NIR-induced photodynamic therapy were evaluated in vitro against human skin melanoma (MeWo) and ovarian (SKOV-3) cancer cells. Results evidenced the preferential uptake of the theranostic cubosomes in SKOV-3 cells in comparison to uptake in MeWo cells, and this effect was enhanced by the folic acid functionalization of the cubosomes surface. Nanocarriers coloaded with the hybrid fluorophores exhibited a superior NIR-induced photodynamic activity, also confirmed by the improved mitochondrial activity and the most affecting f-actin fibers of cytoskeleton. Similar results, but with higher photocytotoxicity, were detected when folic acid-functionalized cubosomes were incubated with SKOV-3 cells. Taken on the whole, these results prove these hybrid cubosomes are good candidates for the photodynamic treatment of tumor lesions

    Nonlinear absorption and nonlinear refraction: maximizing the merit factors

    Get PDF
    Both nonlinear absorption and nonlinear refraction are effects that are potentially useful for a plethora of applications in photonics, nanophotonics and biophotonics. Despite substantial attention given to these phenomena by researchers studying the merits of disparate systems such as organic materials, hybrid materials, metal-containing molecules and nanostructures, it is virtually impossible to compare the results obtained on different materials when varying parameters of the light beams and different techniques are employed. We have attempted to address the problem by studying the properties of various systems in a systematic way, within a wide range of wavelengths, and including the regions of onephoton, two-photon and three-photon absorption. The objects of our studies have been typical nonlinear chromophores, such as π-conjugated molecules, oligomers and polymers, organometallics and coordination complexes containing transition metals, organometallic dendrimers, small metal-containing clusters, and nanoparticles of various kinds, including semiconductor quantum dots, plasmonic particles and rare-earth doped nanocrystals. We discuss herein procedures to quantify the nonlinear response of all of these systems, by defining and comparing the merit factors relevant for various applications
    corecore