11,903 research outputs found

    Surface electrical properties experiment, part 1

    Get PDF
    The work is reported which was performed on the Surface Electrical Properties Experiment Data Acquisition System. Areas discussed include: data handling and processing, installation and external signal application, operation of the equipment, and digital output. Detailed circuit descriptions are included

    Spatial coherence resonance on diffusive and small-world networks of Hodgkin-Huxley neurons

    Full text link
    Spatial coherence resonance in a spatially extended system that is locally modeled by Hodgkin-Huxley (HH) neurons is studied in this paper. We focus on the ability of additive temporally and spatially uncorrelated Gaussian noise to extract a particular spatial frequency of excitatory waves in the medium, whereby examining also the impact of diffusive and small-world network topology determining the interactions amongst coupled HH neurons. We show that there exists an intermediate noise intensity that is able to extract a characteristic spatial frequency of the system in a resonant manner provided the latter is diffusively coupled, thus indicating the existence of spatial coherence resonance. However, as the diffusive topology of the medium is relaxed via the introduction of shortcut links introducing small-world properties amongst coupled HH neurons, the ability of additive Gaussian noise to evoke ordered excitatory waves deteriorates rather spectacularly, leading to the decoherence of the spatial dynamics and with it related absence of spatial coherence resonance. In particular, already a minute fraction of shortcut links suffices to substantially disrupt coherent pattern formation in the examined system.Comment: 8 two-column pages, 6 figures; accepted for publication in Chao

    Evaluation of be-38 percent al alloy final report, 27 jun. 1964 - 28 feb. 1965

    Get PDF
    Mechanical properties, microstructural features, and general metallurgical quality of beryllium- aluminum allo

    Non-nequilibrium model on Apollonian networks

    Full text link
    We investigate the Majority-Vote Model with two states (1,+1-1,+1) and a noise qq on Apollonian networks. The main result found here is the presence of the phase transition as a function of the noise parameter qq. We also studies de effect of redirecting a fraction pp of the links of the network. By means of Monte Carlo simulations, we obtained the exponent ratio γ/ν\gamma/\nu, β/ν\beta/\nu, and 1/ν1/\nu for several values of rewiring probability pp. The critical noise was determined qcq_{c} and UU^{*} also was calculated. The effective dimensionality of the system was observed to be independent on pp, and the value Deff1.0D_{eff} \approx1.0 is observed for these networks. Previous results on the Ising model in Apollonian Networks have reported no presence of a phase transition. Therefore, the results present here demonstrate that the Majority-Vote Model belongs to a different universality class as the equilibrium Ising Model on Apollonian Network.Comment: 5 pages, 5 figure

    Evidence from satellite altimetry for small-scale convection in the mantle

    Get PDF
    Small scale convection can be defined as that part of the mantle circulation in which upwellings and downwellings can occur beneath the lithosphere within the interiors of plates, in contrast to the large scale flow associated with plate motions where upwellings and downwellings occur at ridges and trenches. The two scales of convection will interact so that the form of the small scale convection will depend on how it arises within the large scale flow. Observations based on GEOS-3 and SEASAT altimetry suggest that small scale convection occurs in at least two different ways

    STEPS - an approach for human mobility modeling

    Get PDF
    In this paper we introduce Spatio-TEmporal Parametric Stepping (STEPS) - a simple parametric mobility model which can cover a large spectrum of human mobility patterns. STEPS makes abstraction of spatio-temporal preferences in human mobility by using a power law to rule the nodes movement. Nodes in STEPS have preferential attachment to favorite locations where they spend most of their time. Via simulations, we show that STEPS is able, not only to express the peer to peer properties such as inter-ontact/contact time and to reflect accurately realistic routing performance, but also to express the structural properties of the underlying interaction graph such as small-world phenomenon. Moreover, STEPS is easy to implement, exible to configure and also theoretically tractable

    Enhancing complex-network synchronization

    Full text link
    Heterogeneity in the degree (connectivity) distribution has been shown to suppress synchronization in networks of symmetrically coupled oscillators with uniform coupling strength (unweighted coupling). Here we uncover a condition for enhanced synchronization in directed networks with weighted coupling. We show that, in the optimum regime, synchronizability is solely determined by the average degree and does not depend on the system size and the details of the degree distribution. In scale-free networks, where the average degree may increase with heterogeneity, synchronizability is drastically enhanced and may become positively correlated with heterogeneity, while the overall cost involved in the network coupling is significantly reduced as compared to the case of unweighted coupling.Comment: 4 pages, 3 figure

    Recovery of Large Angular Scale CMB Polarization for Instruments Employing Variable-delay Polarization Modulators

    Full text link
    Variable-delay Polarization Modulators (VPMs) are currently being implemented in experiments designed to measure the polarization of the cosmic microwave background on large angular scales because of their capability for providing rapid, front-end polarization modulation and control over systematic errors. Despite the advantages provided by the VPM, it is important to identify and mitigate any time-varying effects that leak into the synchronously modulated component of the signal. In this paper, the effect of emission from a 300300 K VPM on the system performance is considered and addressed. Though instrument design can greatly reduce the influence of modulated VPM emission, some residual modulated signal is expected. VPM emission is treated in the presence of rotational misalignments and temperature variation. Simulations of time-ordered data are used to evaluate the effect of these residual errors on the power spectrum. The analysis and modeling in this paper guides experimentalists on the critical aspects of observations using VPMs as front-end modulators. By implementing the characterizations and controls as described, front-end VPM modulation can be very powerful for mitigating 1/f1/f noise in large angular scale polarimetric surveys. None of the systematic errors studied fundamentally limit the detection and characterization of B-modes on large scales for a tensor-to-scalar ratio of r=0.01r=0.01. Indeed, r<0.01r<0.01 is achievable with commensurately improved characterizations and controls.Comment: 13 pages, 13 figures, 1 table, matches published versio
    corecore