4,258 research outputs found
Egg development, hatching rhythm and moult patterns in Paralomos spinosissima (Decapoda: Anomura: Paguroidea: Lithodidae) from South Georgia waters (Southern Ocean)
Larval release, hatching rhythms and moult patterns were examined in a captive population of the subantarctic lithodid, Paralomis spinosissima from the South Georgia and Shag Rocks region. Larvae hatched throughout the year with the majority of females starting to release larvae at the end of the austral summer and beginning of autumn. Larval release continued over a period of up to 9 weeks with high variability in the numbers that hatched each day. A similar seasonal pattern to hatching was evident in the moulting of females. Intermoult period for two adult females (CL = 63 and 85 mm) ranged from 894 to 1,120 days while an intermoult period for males was estimated to be in excess of 832 days. The results are consistent with other species of Paralomis and are discussed in relation to physiological and environmental adaptations to the cold-water conditions south of the Antarctic Convergence
Intravascular ultrasound, performed during resuscitative endovascular balloon occlusion of the aorta (REBOA), confirms correct balloon deployment and haemostasis - a potential solution for remote, austere and military settings.
Introduction Resuscitative endovascular balloon occlusion of the aorta (REBOA) is rapidly evolving as an emergency haemorrhage control technique. It has wide potential applicability in remote and austere settings, and following military trauma where prolonged field care might be required. However, rapid confirmation of balloon delivery is a challenge which relies on estimates derived from anatomical measurements or trans-abdominal ultrasound. In addition, confirmation of adequate balloon expansion is difficult. Intravascular ultrasound (IVUS) offers a solution to these two issues, making REBOA a deliverable therapy in the pre-hospital and early hospital settings.Publisher PDFPeer reviewe
Multilayer metamaterial absorbers inspired by perfectly matched layers
We derive periodic multilayer absorbers with effective uniaxial properties
similar to perfectly matched layers (PML). This approximate representation of
PML is based on the effective medium theory and we call it an effective medium
PML (EM-PML). We compare the spatial reflection spectrum of the layered
absorbers to that of a PML material and demonstrate that after neglecting gain
and magnetic properties, the absorber remains functional. This opens a route to
create electromagnetic absorbers for real and not only numerical applications
and as an example we introduce a layered absorber for the wavelength of
~m made of SiO and NaCl. We also show that similar cylindrical
core-shell nanostructures derived from flat multilayers also exhibit very good
absorptive and reflective properties despite the different geometry
Organic aerosol formation downwind from the Deepwater Horizon oil spill.
A large fraction of atmospheric aerosols are derived from organic compounds with various volatilities. A National Oceanic and Atmospheric Administration (NOAA) WP-3D research aircraft made airborne measurements of the gaseous and aerosol composition of air over the Deepwater Horizon (DWH) oil spill in the Gulf of Mexico that occurred from April to August 2010. A narrow plume of hydrocarbons was observed downwind of DWH that is attributed to the evaporation of fresh oil on the sea surface. A much wider plume with high concentrations of organic aerosol (>25 micrograms per cubic meter) was attributed to the formation of secondary organic aerosol (SOA) from unmeasured, less volatile hydrocarbons that were emitted from a wider area around DWH. These observations provide direct and compelling evidence for the importance of formation of SOA from less volatile hydrocarbons
Polarization of coalitions in an agent-based model of political discourse
Political discourse is the verbal interaction between political actors in a policy domain. This article explains the formation of polarized advocacy or discourse coalitions in this complex phenomenon by presenting a dynamic, stochastic, and discrete agent-based model based on graph theory and local optimization. In a series of thought experiments, actors compute their utility of contributing a specific statement to the discourse by following ideological criteria, preferential attachment, agenda-setting strategies, governmental coherence, or other mechanisms. The evolving macro-level discourse is represented as a dynamic network and evaluated against arguments from the literature on the policy process. A simple combination of four theoretical mechanisms is already able to produce artificial policy debates with theoretically plausible properties. Any sufficiently realistic configuration must entail innovative and path-dependent elements as well as a blend of exogenous preferences and endogenous opinion formation mechanisms
High resolution dynamical mapping of social interactions with active RFID
In this paper we present an experimental framework to gather data on
face-to-face social interactions between individuals, with a high spatial and
temporal resolution. We use active Radio Frequency Identification (RFID)
devices that assess contacts with one another by exchanging low-power radio
packets. When individuals wear the beacons as a badge, a persistent radio
contact between the RFID devices can be used as a proxy for a social
interaction between individuals. We present the results of a pilot study
recently performed during a conference, and a subsequent preliminary data
analysis, that provides an assessment of our method and highlights its
versatility and applicability in many areas concerned with human dynamics
Volume-Targeted Ventilation and Arterial Carbon Dioxide in Neonates
Objectives: To review the arterial carbon dioxide tensions (PaCO2) in newborn infants ventilated using synchronized intermittent mandatory ventilation (SIMV) in volume guarantee mode (using the Drager Babylog 8000+) with a unit policy targeting tidal volumes of approximately 4 mL/kg. Methods: Data on ventilator settings and arterial (PaCO2 levels were collected on all arterial blood gases (ABG; n = 288) from 50 neonates ( 65 mmHg) were determined. Results: The mean (SD) (PaCO2 during the first 48 h was 46.6 (9.0) mmHg. The mean (SD) (PaCO2 on the first blood gas of those infants commenced on volume guarantee from admission was 45.1 (12.5) mmHg. Severe hypo- or hypercapnoea occurred in 8% of infants at the time of their first blood gas measurement, and i
Who knows best? A Q methodology study to explore perspectives of professional stakeholders and community participants on health in low-income communities
Abstract Background Health inequalities in the UK have proved to be stubborn, and health gaps between best and worst-off are widening. While there is growing understanding of how the main causes of poor health are perceived among different stakeholders, similar insight is lacking regarding what solutions should be prioritised. Furthermore, we do not know the relationship between perceived causes and solutions to health inequalities, whether there is agreement between professional stakeholders and people living in low-income communities or agreement within these groups. Methods Q methodology was used to identify and describe the shared perspectives (‘subjectivities’) that exist on i) why health is worse in low-income communities (‘Causes’) and ii) the ways that health could be improved in these same communities (‘Solutions’). Purposively selected individuals (n = 53) from low-income communities (n = 25) and professional stakeholder groups (n = 28) ranked ordered sets of statements – 34 ‘Causes’ and 39 ‘Solutions’ – onto quasi-normal shaped grids according to their point of view. Factor analysis was used to identify shared points of view. ‘Causes’ and ‘Solutions’ were analysed independently, before examining correlations between perspectives on causes and perspectives on solutions. Results Analysis produced three factor solutions for both the ‘Causes’ and ‘Solutions’. Broadly summarised these accounts for ‘Causes’ are: i) ‘Unfair Society’, ii) ‘Dependent, workless and lazy’, iii) ‘Intergenerational hardships’ and for ‘Solutions’: i) ‘Empower communities’, ii) ‘Paternalism’, iii) ‘Redistribution’. No professionals defined (i.e. had a significant association with one factor only) the ‘Causes’ factor ‘Dependent, workless and lazy’ and the ‘Solutions’ factor ‘Paternalism’. No community participants defined the ‘Solutions’ factor ‘Redistribution’. The direction of correlations between the two sets of factor solutions – ‘Causes’ and ‘Solutions’ – appear to be intuitive, given the accounts identified. Conclusions Despite the plurality of views there was broad agreement across accounts about issues relating to money. This is important as it points a way forward for tackling health inequalities, highlighting areas for policy and future research to focus on
Testing Propositions Derived from Twitter Studies: Generalization and Replication in Computational Social Science
Replication is an essential requirement for scientific discovery. The current study aims to generalize and replicate 10 propositions made in previous Twitter studies using a representative dataset. Our findings suggest 6 out of 10 propositions could not be replicated due to the variations of data collection, analytic strategies employed, and inconsistent measurements. The study’s contributions are twofold: First, it systematically summarized and assessed some important claims in the field, which can inform future studies. Second, it proposed a feasible approach to generating a random sample of Twitter users and its associated ego networks, which might serve as a solution for answering social-scientific questions at the individual level without accessing the complete data archive.published_or_final_versio
Temporal networks of face-to-face human interactions
The ever increasing adoption of mobile technologies and ubiquitous services
allows to sense human behavior at unprecedented levels of details and scale.
Wearable sensors are opening up a new window on human mobility and proximity at
the finest resolution of face-to-face proximity. As a consequence, empirical
data describing social and behavioral networks are acquiring a longitudinal
dimension that brings forth new challenges for analysis and modeling. Here we
review recent work on the representation and analysis of temporal networks of
face-to-face human proximity, based on large-scale datasets collected in the
context of the SocioPatterns collaboration. We show that the raw behavioral
data can be studied at various levels of coarse-graining, which turn out to be
complementary to one another, with each level exposing different features of
the underlying system. We briefly review a generative model of temporal contact
networks that reproduces some statistical observables. Then, we shift our focus
from surface statistical features to dynamical processes on empirical temporal
networks. We discuss how simple dynamical processes can be used as probes to
expose important features of the interaction patterns, such as burstiness and
causal constraints. We show that simulating dynamical processes on empirical
temporal networks can unveil differences between datasets that would otherwise
look statistically similar. Moreover, we argue that, due to the temporal
heterogeneity of human dynamics, in order to investigate the temporal
properties of spreading processes it may be necessary to abandon the notion of
wall-clock time in favour of an intrinsic notion of time for each individual
node, defined in terms of its activity level. We conclude highlighting several
open research questions raised by the nature of the data at hand.Comment: Chapter of the book "Temporal Networks", Springer, 2013. Series:
Understanding Complex Systems. Holme, Petter; Saram\"aki, Jari (Eds.
- …