22 research outputs found

    Standing stock of Antarctic krill (Euphausia superba Dana, 1850) (Euphausiacea) in the Southwest Atlantic sector of the Southern Ocean, 2018–19

    Get PDF
    Estimates of the distribution and density of Antarctic krill (Euphausia superba Dana, 1850) were derived from a large-scale survey conducted during the austral summer in the Southwest Atlantic sector of the Southern Ocean and across the Scotia Sea in 2018–19, the ‘2018–19 Area 48 Survey’. Survey vessels were provided by Norway, the Association of Responsible Krill harvesting companies and Aker BioMarine AS, the United Kingdom, Ukraine, Republic of Korea, and China. Survey design followed the transects of the Commission for the Conservation of Antarctic Marine Living Resources synoptic survey, carried out in 2000 and from regular national surveys performed in the South Atlantic sector by the U.S., China, Republic of Korea, Norway, and the U.K. The 2018–19 Area 48 Survey represents only the second large-scale survey performed in the area and this joint effort resulted in the largest ever total transect line (19,500 km) coverage carried out as one single exercise in the Southern Ocean. We delineated and integrated acoustic backscatter arising from krill swarms to produce distribution maps of krill areal biomass density and standing stock (biomass) estimates. Krill standing stock for the Area 48 was estimated to be 62.6 megatonnes (mean density of 30 g m–2 over 2 million km2) with a sampling coefficient variation of 13%. The highest mean krill densities were found in the South Orkney Islands stratum (93.2 g m–2) and the lowest in the South Georgia Island stratum (6.4 g m–2). The krill densities across the strata compared to those found during the previous survey indicate some regional differences in distribution and biomass. It is currently not possible to assign any such differences or lack of differences between the two survey datasets to longer term trends in the environment, krill stocks or fishing pressure

    Whole-genome sequencing reveals host factors underlying critical COVID-19

    Get PDF
    Critical COVID-19 is caused by immune-mediated inflammatory lung injury. Host genetic variation influences the development of illness requiring critical care1 or hospitalization2,3,4 after infection with SARS-CoV-2. The GenOMICC (Genetics of Mortality in Critical Care) study enables the comparison of genomes from individuals who are critically ill with those of population controls to find underlying disease mechanisms. Here we use whole-genome sequencing in 7,491 critically ill individuals compared with 48,400 controls to discover and replicate 23 independent variants that significantly predispose to critical COVID-19. We identify 16 new independent associations, including variants within genes that are involved in interferon signalling (IL10RB and PLSCR1), leucocyte differentiation (BCL11A) and blood-type antigen secretor status (FUT2). Using transcriptome-wide association and colocalization to infer the effect of gene expression on disease severity, we find evidence that implicates multiple genes—including reduced expression of a membrane flippase (ATP11A), and increased expression of a mucin (MUC1)—in critical disease. Mendelian randomization provides evidence in support of causal roles for myeloid cell adhesion molecules (SELE, ICAM5 and CD209) and the coagulation factor F8, all of which are potentially druggable targets. Our results are broadly consistent with a multi-component model of COVID-19 pathophysiology, in which at least two distinct mechanisms can predispose to life-threatening disease: failure to control viral replication; or an enhanced tendency towards pulmonary inflammation and intravascular coagulation. We show that comparison between cases of critical illness and population controls is highly efficient for the detection of therapeutically relevant mechanisms of disease

    A compilation of parameters for ecosystem dynamics models of the Scotia Sea-Antarctic Peninsula region

    Get PDF
    Expansion of the krill fishery in the Scotia Sea – Antarctic Peninsula region beyond the current precautionary catch limit requires the development and assessment of methods for subdividing the regional catch limit amongst smaller spatial units. This contribution compiles parameters for use in the ecosystem dynamic models that are needed to assess these methods. These parameters include life history and krill consumption parameters for the fish, whale, penguin and seal species that feed on krill in this region. Maximum krill transport rates are also derived from the OCCAM global ocean circulation model. This parameter set, like most others, is associated with considerable uncertainty, which must be taken into account when it is used. The sources, assumptions and calculations at every stage of the compilation process are therefore detailed and plausible limits for parameter values are provided where possible. The results suggest that fish are the major krill consumers in all SSMUs, with perciform fish taking as much krill as whales, penguins and fur seals combined and myctophid fish taking double that amount. However estimates of krill consumption per unit predator biomass suggest that this is an order of magnitude higher in penguins and seals than in whales and fish

    Model uncertainty in the ecosystem approach to fisheries

    Get PDF
    Fisheries scientists habitually consider uncertainty in parameter values, but often neglect uncertainty about model structure. The importance of this latter source of uncertainty is likely to increase with the greater emphasis on ecosystem models in the move to an ecosystem approach to fisheries (EAF). It is therefore necessary to increase awareness about pragmatic approaches with which fisheries modellers and managers can account for model uncertainty and so we review current ways of dealing with model uncertainty in fisheries and other disciplines. These all involve considering a set of alternative models representing different structural assumptions, but differ in how those models are used. The models can be used to identify bounds on possible outcomes, find management actions that will perform adequately irrespective of the true model, find management actions that best achieve one or more objectives given weights assigned to each model, or formalise hypotheses for evaluation through experimentation. Data availability is likely to limit the use of approaches that involve weighting alternative models in an ecosystem setting, and the cost of experimentation is likely to limit its use. Practical implementation of the EAF should therefore be based on management approaches that acknowledge the uncertainty inherent in model predictions and are robust to it. Model results must be presented in a way that represents the risks and trade-offs associated with alternative actions and the degree of uncertainty in predictions. This presentation should not disguise the fact that, in many cases, estimates of model uncertainty may be based on subjective criteria. The problem of model uncertainty is far from unique to fisheries, and coordination among fisheries modellers and modellers from other communities will therefore be useful
    corecore